Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 728, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132099

RESUMO

Postsynaptic NMDARs at spinal synapses are required for postsynaptic long-term potentiation and chronic pain. However, how presynaptic NMDARs (PreNMDARs) in spinal nociceptor terminals control presynaptic plasticity and pain hypersensitivity has remained unclear. Here we report that PreNMDARs in spinal nociceptor terminals modulate synaptic transmission in a nociceptive tone-dependent manner. PreNMDARs depresses presynaptic transmission in basal state, while paradoxically causing presynaptic potentiation upon injury. This state-dependent modulation is dependent on Ca2+ influx via PreNMDARs. Small conductance Ca2+-activated K+ (SK) channels are responsible for PreNMDARs-mediated synaptic depression. Rather, tissue inflammation induces PreNMDARs-PKG-I-dependent BDNF secretion from spinal nociceptor terminals, leading to SK channels downregulation, which in turn converts presynaptic depression to potentiation. Our findings shed light on the state-dependent characteristics of PreNMDARs in spinal nociceptor terminals on modulating nociceptive transmission and revealed a mechanism underlying state-dependent transition. Moreover, we identify PreNMDARs in spinal nociceptor terminals as key constituents of activity-dependent pain sensitization.


Assuntos
Dor Crônica/fisiopatologia , Nociceptores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cálcio/metabolismo , Dor Crônica/genética , Dor Crônica/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Inflamação , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Camundongos , Camundongos Transgênicos , Substância Cinzenta Periaquedutal/citologia , Substância Cinzenta Periaquedutal/fisiologia , Canais de Potássio Cálcio-Ativados/genética , Canais de Potássio Cálcio-Ativados/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Transmissão Sináptica
2.
FASEB J ; 34(6): 8526-8543, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32359120

RESUMO

Opioid analgesics remain the mainstay for managing intractable chronic pain, but their use is limited by detrimental side effects such as analgesic tolerance and hyperalgesia. Calcium-dependent synaptic plasticity is a key determinant in opiates tolerance and hyperalgesia. However, the exact substrates for this calcium-dependent synaptic plasticity in mediating these maladaptive processes are largely unknown. Canonical transient receptor potential 1, 4, and 5 (TRPC1, 4, 5) proteins assemble into heteromultimeric nonselective cation channels with high Ca2+ permeability and influence various neuronal functions. However, whether and how TRPC1/4/5 channels contribute to the development of opiates tolerance and hyperalgesia remains elusive. Here, we show that TRPC1/4/5 channels contribute to the generation of morphine tolerance and hyperalgesia. Chronic morphine exposure leads to upregulation of TRPC1/4/5 channels in the spinal cord. Spinally expressed TRPC1, TPRC4, and TRPC5 are required for chronic morphine-induced synaptic long-term potentiation (LTP) as well as remodeling of synaptic spines in the dorsal horn, thereby orchestrating functional and structural plasticity during the course of morphine-induced hyperalgesia and tolerance. These effects are attributed to TRPC1/4/5-mediated Ca2+ elevation in the spinal dorsal horn induced by chronic morphine treatment. This study identifies TRPC1/4/5 channels as a promising novel target to prevent the unwanted morphine tolerance and hyperalgesia.


Assuntos
Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Morfina/farmacologia , Plasticidade Neuronal/fisiologia , Medula Espinal/metabolismo , Canais de Cátion TRPC/metabolismo , Analgésicos/farmacologia , Analgésicos Opioides/farmacologia , Animais , Tolerância a Medicamentos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/metabolismo
3.
Neural Plast ; 2020: 3764193, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32273889

RESUMO

Chronic pathological pain is one of the most intractable clinical problems faced by clinicians and can be devastating for patients. Despite much progress we have made in understanding chronic pain in the last decades, its underlying mechanisms remain elusive. It is assumed that abnormal increase of calcium levels in the cells is a key determinant in the transition from acute to chronic pain. Exploring molecular players mediating Ca2+ entry into cells and molecular mechanisms underlying activity-dependent changes in Ca2+ signaling in the somatosensory pain pathway is therefore helpful towards understanding the development of chronic, pathological pain. Canonical transient receptor potential (TRPC) channels form a subfamily of nonselective cation channels, which permit the permeability of Ca2+ and Na+ into the cells. Initiation of Ca2+ entry pathways by these channels triggers the development of many physiological and pathological functions. In this review, we will focus on the functional implication of TRPC channels in nociception with the elucidation of their role in the detection of external stimuli and nociceptive hypersensitivity.


Assuntos
Neurônios/fisiologia , Nociceptividade/fisiologia , Dor/fisiopatologia , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Encéfalo/fisiopatologia , Sinalização do Cálcio , Gânglios Espinais/fisiopatologia , Humanos , Vias Neurais/fisiopatologia
4.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 27(1): 39-44, 2019 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-30738445

RESUMO

OBJECTIVE: To investigate the clinical importance of combined detection of urinary amino acid metabolite --urinary tyrosine (UT) and tumor specific growth factor (TSGF) in the disease observation and curative effect evaluation of acute leukemia(AL). METHODS: In 87 cases of AL, the UT and TSGF levels were detected by using chemical chromogenic method and continuous monitoring method respectively. The 2 indicators of each treatment group were statistically analyzed and compared with that of 50 healthy control group. RESULTS: In 87 AL patients, the levels of UT and TSGF after treatment were significantly lower than those before treatment (P<0.01). The level of UT in non-remission(NR) group and partial remission(PR) group was significantly higher than that in completely remission(CR) group(P<0.01,P<0.05) and control group (P<0.01, P<0.01), The UT level in NR group was significantly higher than that in PR group (P<0.05), the UT level in CR group was significantly higher than that in control group (P<0.05). The levels of TSGF in NR and PR groups were significantly higher than those in CR and control groups(P<0.01, P<0.01). The level of TSGF in NR group was significantly higher than that in PR group(P<0.05), but no significant difference existed between CR group and control group(P>0.05). CONCLUSION: UT and TSGF levels are related with the metabolism of tumor cells in AL patients. UT level can be used to predict the recurrence of patients with CR. The combined dynamical monitoring of these 2 indicators can be used as the indexes for observation of AL status, evaluation of therapeutic efficacy, prediction of prognosis and relapse of AL.


Assuntos
Leucemia Mieloide Aguda , Doença Aguda , Aminoácidos , Antígenos de Neoplasias , Humanos , Proteínas de Neoplasias , Prognóstico , Recidiva
5.
Int J Mol Sci ; 19(1)2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29303989

RESUMO

Sensory neuron types have been distinguished by distinct morphological and transcriptional characteristics. Excitability is the most fundamental functional feature of neurons. Mathematical models described by Hodgkin have revealed three types of neuronal excitability based on the relationship between firing frequency and applied current intensity. However, whether natural sensory neurons display different functional characteristics in terms of excitability and whether this excitability type undergoes plastic changes under pathological pain states have remained elusive. Here, by utilizing whole-cell patch clamp recordings, behavioral and pharmacological assays, we demonstrated that large dorsal root ganglion (DRG) neurons can be classified into three classes and four subclasses based on their excitability patterns, which is similar to mathematical models raised by Hodgkin. Analysis of hyperpolarization-activated cation current (Ih) revealed different magnitude of Ih in different excitability types of large DRG neurons, with higher Ih in Class 2-1 than that in Class 1, 2-2 and 3. This indicates a crucial role of Ih in the determination of excitability type of large DRG neurons. More importantly, this pattern of excitability displays plastic changes and transition under pathological pain states caused by peripheral nerve injury. This study sheds new light on the functional characteristics of large DRG neurons and extends functional classification of large DRG neurons by integration of transcriptomic and morphological characteristics.


Assuntos
Potenciais de Ação , Gânglios Espinais/citologia , Neuralgia/fisiopatologia , Neurônios Aferentes/fisiologia , Animais , Células Cultivadas , Gânglios Espinais/fisiopatologia , Masculino , Plasticidade Neuronal , Neurônios Aferentes/classificação , Ratos , Ratos Sprague-Dawley
6.
Mol Pain ; 13: 1744806917707127, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28587505

RESUMO

Cervical radiculopathic pain is a very common symptom that may occur with cervical spondylosis. Mechanical allodynia is often associated with cervical radiculopathic pain and is inadequately treated with current therapies. However, the precise mechanisms underlying cervical radiculopathic pain-associated mechanical allodynia have remained elusive. Compelling evidence from animal models suggests a role of large-diameter dorsal root ganglion neurons and plasticity of spinal circuitry attached with Aß fibers in mediating neuropathic pain. Whether cervical radiculopathic pain condition induces plastic changes of large-diameter dorsal root ganglion neurons and what mechanisms underlie these changes are yet to be known. With combination of patch-clamp recording, immunohistochemical staining, as well as behavioral surveys, we demonstrated that upon chronic compression of C7/8 dorsal root ganglions, large-diameter cervical dorsal root ganglion neurons exhibited frequent spontaneous firing together with hyperexcitability. Quantitative analysis of hyperpolarization-activated cation current ( Ih) revealed that Ih was greatly upregulated in large dorsal root ganglion neurons from cervical radiculopathic pain rats. This increased Ih was supported by the enhanced expression of hyperpolarization-activated, cyclic nucleotide-modulated channels subunit 3 in large dorsal root ganglion neurons. Blockade of Ih with selective antagonist, ZD7288 was able to eliminate the mechanical allodynia associated with cervical radiculopathic pain. This study sheds new light on the functional plasticity of a specific subset of large-diameter dorsal root ganglion neurons and reveals a novel mechanism that could underlie the mechanical allodynia associated with cervical radiculopathy.


Assuntos
Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Neuralgia/etiologia , Neuralgia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Radiculopatia/etiologia , Radiculopatia/metabolismo , Animais , Dor Crônica/etiologia , Dor Crônica/metabolismo , Dor Crônica/patologia , Masculino , Potenciais da Membrana/fisiologia , Neuralgia/patologia , Neurônios Aferentes/citologia , Neurônios Aferentes/metabolismo , Radiculopatia/patologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA