Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 135: 1-8, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28043325

RESUMO

As the important intracellular secondary messengers, calcium channel is the target of many neurotoxic pesticides as calcium homeostasis in the neuroplasm play important role in neuronal functions and behavior in insects. This study investigated the effect of deltamethrin (DM) on calcium channel in the brain nerve cells of adult workers of Apis mellifera ligustica Spinola that were cultured in vitro. The results showed that the intracellular calcium concentration was significantly elevated even with a very low concentration of the DM (3.125×10-2mg/L). Further testing revealed that T-type voltage-gated calcium channels (VGCCs), except for sodium channels, was one of the target of DM on toxicity of Apis mellifera, while DM has no significant effect on the L-type VGCCs, N-methyl-d-aspartate receptor-gated calcium channels and calcium store. These results suggesting that the DM may act on T-type VGCCs in brain cells of honeybees and result in behavioral abnormalities including swarming, feeding, learning, and acquisition.


Assuntos
Abelhas , Canais de Cálcio Tipo T/metabolismo , Proteínas de Insetos/metabolismo , Inseticidas/toxicidade , Neurônios/efeitos dos fármacos , Nitrilas/toxicidade , Piretrinas/toxicidade , Animais , Abelhas/citologia , Encéfalo/citologia , Cálcio/metabolismo , Células Cultivadas , Neurônios/metabolismo
2.
Genome Announc ; 4(4)2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27491983

RESUMO

Chronic bee paralysis virus (CBPV) is a serious viral disease affecting adult bees. We report here the complete genome sequence of CBPV, which was isolated from a honey bee colony with the symptom of severe crawling. The genome of CBPV consists of two segments, RNA 1 and RNA 2, containing respective overlapping fragments.

3.
Int J Biol Sci ; 7(6): 823-36, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21814479

RESUMO

The pine wood nematode, Bursaphelenchus xylophilus, is an invasive plant parasitic nematode and a worldwide quarantine pest. An indigenous species in North America and the causal agent of pine wilt disease, B. xylophilus has devastated pine production in Southeastern Asia including Japan, China, and Korea since its initial introduction in the early 1900s. The reactive oxygen species (ROS) is the first line of defense utilized by host plants against parasites, while nematodes, counteractively, employ antioxidants to facilitate their infection. Peroxiredoxins (Prxs) are a large class of antioxidants recently found in a wide variety of organisms. In this report, a gene encoding a novel 2-cysteine peroxiredoxin protein in B. xylophilus was cloned and characterized. The 2-cysteine peroxiredoxin in B. xylophilus (herein refers to as "BxPrx") is highly conserved in comparison to 2-cysteine peroxiredoxins (Prx2s) in other nematodes, which have two conserved cysteine amino acids (Cp and Cr), a threonine-cysteine-arginine catalytic triad, and two signature motifs (GGLG and YF) sensitive to hydrogen peroxide. In silico assembly of BxPrx tertiary structure reveals the spatial configuration of these conserved domains and the simulated BxPrx 3-dimensional structure is congruent with its presumed redox functions. Although no signal peptide was identified, BxPrx was abundantly expressed and secreted under the B. xylophilus cuticle. Upon further analysis of this leader-less peptide, a single transmembrane α-helix composed of 23 consecutive hydrophobic amino acids was found in the primary structure of BxPrx. This transmembrane region and/or readily available ATP binding cassette transporters may facilitate the transport of non-classical BxPrx across the cell membrane. Recombinant BxPrx showed peroxidase activity in vitro reducing hydrogen peroxide using glutathione as the electron donor. The combined results from gene discovery, protein expression and distribution profiling (especially the "surprising" presence under the nematode cuticle), and recombinant antioxidant activity suggest that BxPrx plays a key role in combating the oxidative burst engineered by the ROS defense system in host plants during the infection process. In summary, BxPrx is a genetic factor potentially facilitating B. xylophilus infestation.


Assuntos
Peroxirredoxinas/metabolismo , Tylenchida/enzimologia , Sequência de Aminoácidos , Animais , Clonagem Molecular , Interações Hospedeiro-Parasita/genética , Imuno-Histoquímica , Dados de Sequência Molecular , Peroxirredoxinas/genética , Filogenia , Pinus/parasitologia , Reação em Cadeia da Polimerase , Proteínas Recombinantes , Análise de Sequência de DNA , Tylenchida/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...