Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prog Nucl Magn Reson Spectrosc ; 140-141: 1-41, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38705634

RESUMO

Solid-state NMR spectroscopy (ssNMR) can provide details about the structure, host-guest/guest-guest interactions and dynamic behavior of materials at atomic length scales. A crucial use of ssNMR is for the characterization of zeolite catalysts that are extensively employed in industrial catalytic processes. This review aims to spotlight the recent advancements in ssNMR spectroscopy and its application to zeolite chemistry. We first review the current ssNMR methods and techniques that are relevant to characterize zeolite catalysts, including advanced multinuclear and multidimensional experiments, in situ NMR techniques and hyperpolarization methods. Of these, the methodology development on half-integer quadrupolar nuclei is emphasized, which represent about two-thirds of stable NMR-active nuclei and are widely present in catalytic materials. Subsequently, we introduce the recent progress in understanding zeolite chemistry with the aid of these ssNMR methods and techniques, with a specific focus on the investigation of zeolite framework structures, zeolite crystallization mechanisms, surface active/acidic sites, host-guest/guest-guest interactions, and catalytic reaction mechanisms.

2.
Chemistry ; 30(34): e202401006, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38625163

RESUMO

Direct determination of the equilibrium adsorption and spectroscopic observation of adsorbent-adsorbate interaction is crucial to evaluate the olefin/paraffin separation performance of porous adsorbents. However, the experimental characterization of competitive adsorption of various adsorbates at atomic-molecular level in the purification of multicomponent gas mixtures is challenging and rarely conducted. Herein, solid-state NMR spectroscopy is employed to examine the effect of co-adsorbed guest adsorbates on the separation of ethylene/ethane mixtures on Mg-MOF-74, Zn-MOF-74 and UTSA-74. 1H MAS NMR facilitates the determination of equilibrium uptake and adsorption selectivity of ethylene/ethane in ternary mixtures. The co-adsorption of H2O and CO2 significantly leads to the degradation of ethylene uptake and ethylene/ethane selectivity. The detailed host-guest and guest-guest interactions are unraveled by 2D 1H-1H spin diffusion homo-nuclear correlation and static 25Mg NMR experiments. The experimental results verify H2O coordinated on open metal sites can supply a new adsorption site for ethylene and ethane. The effects of guest adsorbates on the adsorption capacity and adsorption selectivity of ethylene/ethane mixtures are in the following order: H2O>CO2>O2. This work provides a direct approach for exploring the equilibrium adsorption and detailed separation mechanism of multicomponent gas mixtures using MOFs adsorbents.

3.
J Am Chem Soc ; 146(12): 8688-8696, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38482699

RESUMO

Carbocations play a pivotal role as reactive intermediates in zeolite-catalyzed methanol-to-hydrocarbon (MTH) transformations. However, the interaction between carbocations and water vapor and its subsequent effects on catalytic performance remain poorly understood. Using micro-magnetic resonance imaging (µMRI) and solid-state NMR techniques, this work investigates the hydrophilic behavior of cyclopentenyl cations within ZSM-5 pores under vapor conditions. We show that the polar cationic center of cyclopentenyl cations readily initiates water nucleus formation through water molecule capture. This leads to an inhomogeneous water adsorption gradient along the axial positions of zeolite, correlating with the spatial distribution of carbocation concentrations. The adsorbed water promotes deprotonation and aromatization of cyclopentenyl cations, significantly enhancing the aromatic product selectivity in MTH catalysis. These results reveal the important influence of adsorbed water in modulating the carbocation reactivity within confined zeolite pores.

4.
Angew Chem Int Ed Engl ; 63(23): e202404633, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38509004

RESUMO

Solvent effects in catalytic reactions have received widespread attention as they can promote reaction rates and product selectivities by orders of magnitude. It is well accepted that the stable five-membered cyclic intermediates formed between the solvent molecules and Ti species are crucial to the alkene epoxidation in a heterogeneous Ti(IV)-H2O2 system. However, the direct spectroscopic evidence of these intermediates is still missing and the corresponding reaction pathway for the alkene epoxidation remains unclear. By combining in situ 13C MAS NMR, two-dimensional (2D) 1H-13C heteronuclear correlation (HETCOR) NMR spectroscopy and theoretical calculations, the five-membered ring structures, where the protic solvents (ROH), and aprotic solvent (acetone), coordinate and stabilize the active Ti species, are identified for the first time over Ti-Beta/H2O2 system. Moreover, the role of these cyclic intermediates in the alkene epoxidation/hydration conversion is clarified. These results provide new insights into the solvent effect in liquid-phase epoxidation/hydration reactions over Ti(IV)-H2O2 system.

5.
Angew Chem Int Ed Engl ; 63(3): e202313974, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37934010

RESUMO

Water is a ubiquitous component in heterogeneous catalysis over zeolites and can significantly influence the catalyst performance. However, the detailed mechanism insights into zeolite-catalyzed reactions under microscale aqueous environment remain elusive. Here, using multiple dimensional solid-state NMR experiments coupled with ultrahigh magic angle spinning technique and theoretical simulations, we establish a fundamental understanding of the role of water in benzene methylation over ZSM-5 zeolite under water vapor conditions. We show that water competes with benzene for the active sites of zeolite and facilitates the bimolecular reaction mechanism. The growth of water clusters induces a micro-hydrophobic effect in zeolite pores, which reorients benzene molecules and drives their interactions with surface methoxy species (SMS) on zeolite. We identify the formation and evolution of active SMS-Benzene complexes in a microscale aqueous environment and demonstrate that their accumulation in zeolite pores boosts benzene conversion and methylation.

6.
Innovation (Camb) ; 4(4): 100449, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37485080
7.
Cognition ; 239: 105575, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37517138

RESUMO

There is an increasing interest in understanding human-machine differences in morality. Prior research relying on Trolley-like, moral-impersonal dilemmas suggests that people might apply similar norms to humans and machines but judge their identical decisions differently. We examined people's moral norm imposed on humans and robots (Study 1) and moral judgment of their decisions (Study 2) in Trolley and Footbridge dilemmas. Participants imposed similar, utilitarian norms to them in Trolley but different norms in Footbridge where fewer participants thought humans versus robots should take action in the moral-personal dilemma. Unlike previous research, we witnessed a norm-judgment symmetry that prospective norm aligns with retrospective judgment. The more required decision was judged more moral across agents and dilemmas. We discussed the theoretical implications for machine morality.


Assuntos
Tomada de Decisões , Julgamento , Humanos , Estudos Retrospectivos , Princípios Morais
8.
Ergonomics ; 66(11): 1730-1749, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37139680

RESUMO

Given that automation complacency, a hitherto controversial concept, is already used to blame and punish human drivers in current accident investigations and courts, it is essential to map complacency research in driving automation and determine whether current research can support its legitimate usage in these practical fields. Here, we reviewed its status quo in the domain and conducted a thematic analysis. We then discussed five fundamental challenges that might undermine its scientific legitimation: conceptual confusion exists in whether it is an individual versus systems problem; uncertainties exist in current evidence of complacency; valid measures specific to complacency are lacking; short-term laboratory experiments cannot address the long-term nature of complacency and thus their findings may lack external validity; and no effective interventions directly target complacency prevention. The Human Factors/Ergonomics community has a responsibility to minimise its usage and defend human drivers who rely on automation that is far from perfect.Practitioner summary: Human drivers are accused of complacency and overreliance on driving automation in accident investigations and courts. Our review work shows that current academic research in the driving automation domain cannot support its legitimate usage in these practical fields. Its misuse will create a new form of consumer harms.


Assuntos
Condução de Veículo , Comportamento Social , Humanos , Automação , Ergonomia , Sistemas Homem-Máquina , Acidentes de Trânsito/prevenção & controle
9.
J Am Chem Soc ; 145(9): 5342-5352, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36812430

RESUMO

Zeolites are widely used as catalysts and adsorbents in the chemical industry, but their potential for electronic devices has been stunted to date, as they are commonly recognized as electronic insulators. Here, we have for the first time demonstrated that Na-type ZSM-5 zeolites are ultrawide-direct-band-gap semiconductors based on optical spectroscopy, variable-temperature current-voltage characteristics, and photoelectric effect as well as electronic structure theoretical calculations and further unraveled the band-like charge transport mechanism in electrically conductive zeolites. The increase in charge-compensating Na+ cations in Na-ZSM-5 decreases the band gap and affects its density of states, shifting the Fermi level close to the conduction band. Remarkably, the semiconducting Na-ZSM-5 zeolites have been first applied for constructing electrically transduced sensors that can sense trace-level (77 ppb) ammonia with unprecedentedly high sensitivity, negligible cross-sensitivity, and high stability under moisture ambient conditions compared with conventional semiconducting materials and conductive metal-organic frameworks (MOFs). The charge density difference shows that the massive electron transfer between NH3 molecules and Na+ cations ascribed to Lewis acid sites enables electrically transduced chemical sensing. This work opens a new era of zeolites in applications of sensing, optics, and electronics.

10.
Angew Chem Int Ed Engl ; 61(42): e202207400, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36001462

RESUMO

Understanding the acid sites on zeolites is vital for the establishment of catalyst structure-activity relationship and exploration of their potential applications in heterogeneous catalysis. Here, we report the identification of active framework Lewis acid sites on ZSM-5 zeolites. The structures of framework-associated tri-coordinated Al that is bonding with hydroxyl groups are determined by using one- dimensional (1D) 31 P and two-dimensional (2D) 31 P-{27 Al} NMR spectroscopy of trimethylphosphine oxide probe molecule. 2D 13 C-{27 Al} NMR correlation experiments allow the observation of favorable formation of methoxy species on the framework-associated Al Lewis acid sites in methanol reaction at low temperature, which is corroborated by density functional theory calculations. These methoxy species contribute to the further conversion of methanol to hydrocarbons as active C1 species. The results provide new insights into the Lewis acidity of zeolites.

11.
Chem Commun (Camb) ; 58(66): 9242-9245, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35899845

RESUMO

By using 2D 13C-13C correlation MAS NMR spectroscopy and DFT calculations, the nature of cation-π interactions between cyclopentenyl cations and benzene was clarified over H-ZSM-5, H-ß and H-SSZ-13 zeolites. The cation-π interactions are favored over H-ß and H-SSZ-13 with large channels or cages. The zeolite structure is identified to affect the arrangements of cyclopentenyl cations and benzene in the confined environment, leading to different extents of overlapping of positive-negative charge centers and cation-π interaction strength. The stronger cation-π interactions facilitate the bimolecular reactions between cyclopentenyl cations and benzene and the formation of coke species.


Assuntos
Zeolitas , Benzeno/química , Cátions/química , Espectroscopia de Ressonância Magnética , Metanol , Zeolitas/química
12.
Angew Chem Int Ed Engl ; 61(24): e202203603, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35320622

RESUMO

A clear understanding of the acidic properties of bridging Si-OH-Al groups containing crystallographically different oxygen atoms in zeolites is a prerequisite for optimizing their performance as industrial solid catalysts and developing new acid-catalyzed reactions, but presents many challenges. Here, we report the direct observation of yet unrecognized bridging Si-OH-Al groups in the LTA zeolite whose oxygen atoms are crystallographically different from those of already known Brønsted acid sites. We also report that the creation of a crystallographically particular type of bridging OH groups in zeolites and its concentration and acid strength can vary strongly with the content and spatial distribution of framework Al atoms, thus being synthetic in nature, which has been rationalized in terms of the secondary building unit concept.

13.
Phys Chem Chem Phys ; 24(11): 6535-6543, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35258049

RESUMO

Solid-state NMR spectroscopy in conjunction with theoretical calculation was employed to investigate the adsorbent-adsorbate host-guest interactions during propane/propylene separation on ZIF-8. 1H NMR chemical shifts of free gaseous and adsorbed propane/propylene are unambiguously assigned with the assistance of two-dimensional (2D) 1H-1H correlation spectroscopy (COSY) MAS NMR spectra. Meanwhile, the adsorption selectivity for propane/propylene mixtures on ZIF-8 at a pressure in range of 1.9-9.6 bar is quantitatively determined using 1H MAS NMR experiments, which agreed well with the ideal adsorbed solution theory (IAST) predictions. The preferential adsorption of propane compared with propylene on ZIF-8 is directly visualized from the 2D 1H-1H spin diffusion homo-nuclear correlation (HOMCOR) MAS NMR spectroscopy. Moreover, the preferential adsorption sites for propane and propylene are deduced from the 1H-1H spin diffusion buildup curves, which is further confirmed by DFT theoretical calculations. This work provides insights to understand the structure-property relationship during the propane/propylene separation on ZIF-8 as adsorbent.

14.
Angew Chem Int Ed Engl ; 60(51): 26847-26854, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34636120

RESUMO

Carbocations such as cyclic carbenium ions are important intermediates in the zeolite-catalyzed methanol-to-olefins (MTO) reaction. The MTO reaction propagates through a complex hydrocarbon pool process. Understanding the carbocation-involved hydrocarbon pool reaction on a molecular level still remains challenging. Here we show that electron-deficient cyclopentenyl cations stabilized in ZSM-5 zeolite are able to capture the alkanes, methanol, and olefins produced during MTO reaction via noncovalent interactions. Intermolecular spatial proximities/interactions are identified by using two-dimensional 13 C-13 C correlation solid-state NMR spectroscopy. Combined NMR experiments and theoretical analysis suggests that in addition to the dispersion and CH/π interactions, the multiple functional groups in the cyclopentenyl cations produce strong attractive force via cation-induced dipole, cation-dipole and cation-π interactions. These carbocation-induced noncovalent interactions modulate the product selectivity of hydrocarbon pool reaction.

15.
Nat Commun ; 12(1): 4661, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341350

RESUMO

As a commercial MTO catalyst, SAPO-34 zeolite exhibits excellent recyclability probably due to its intrinsic good hydrothermal stability. However, the structural dynamic changes of SAPO-34 catalyst induced by hydrocarbon pool (HP) species and the water formed during the MTO conversion as well as its long-term stability after continuous regenerations are rarely investigated and poorly understood. Herein, the dynamic changes of SAPO-34 framework during the MTO conversion were identified by 1D 27Al, 31P MAS NMR, and 2D 31P-27Al HETCOR NMR spectroscopy. The breakage of T-O-T bonds in SAPO-34 catalyst during long-term continuous regenerations in the MTO conversion could be efficiently suppressed by pre-coking. The combination of catalyst pre-coking and water co-feeding is established to be an efficient strategy to promote the catalytic efficiency and long-term stability of SAPO-34 catalysts in the commercial MTO processes, also sheds light on the development of other high stable zeolite catalyst in the commercial catalysis.

16.
Chemistry ; 27(59): 14711-14720, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34357658

RESUMO

The breathing effects of functionalized MIL-53-X (X=H, CH3 , NH2 , OH, and NO2 ) induced by the inclusions of water, methanol, acetone, and N,N-dimethylformamide solvents were comprehensively investigated by solid-state NMR spectroscopy. 2D homo-nuclear correlation NMR provided direct experimental evidence for the host-guest interaction between the guest solvents and the MOF frameworks. The variations of the 1 H and 13 C NMR chemical shifts in functionalized MIL-53 from the narrow pore phase transitions to large pore forms due to solvent inclusions were clearly identified. The influence of functionalized linkers and their host-guest interactions with the confined solvents on the rotational dynamics of the linkers was examined by separated-local-field MAS NMR experiments in conjunction with DFT theoretical calculations. It is found that the linker rotational dynamics of functionalized MIL-53 in narrow pore form is closely related to the computational rotational energy barrier. The BDC-NO2 linker of activated MIL-53-NO2 undergoes relatively faster rotation, whereas the BDC-NH2 and BDC-OH linkers of activated MIL-53-NH2 and MIL-53-OH exhibit relatively slower rotation. The host-guest interactions between confined solvents and MIL-53-NO2 , MIL-53-CH3 would significantly induce an increase of the order parameters of unsubstituted carbon and reduce the rotational frequency of linkers. This study provides a spectroscopic approach for the investigation of linker rotation in functionalized MOFs at natural abundance with solvents inclusions.

17.
Chemistry ; 27(44): 11303-11308, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34109690

RESUMO

The separation of ethane/ethylene mixture by using metal-organic frameworks (MOFs) as adsorbents is strongly associated with the pore size-sieving effect and the adsorbent-adsorbate interaction. Herein, solid-state NMR spectroscopy is utilized to explore the host-guest interaction and ethane/ethylene separation mechanism on zeolitic imidazolate frameworks (ZIFs). Preferential access to the ZIF-8 and ZIF-8-90 frameworks by ethane compared to ethylene is directly visualized from two-dimensional 1 H-1 H spin diffusion MAS NMR spectroscopy and further verified by computational density distributions. The 1 H MAS NMR spectroscopy provides an alternative for straightforwardly extracting the adsorption selectivity of ethane/ethylene mixture at 1.1∼9.6 bar in ZIFs, which is consistent with the IAST predictions.

18.
Chem Commun (Camb) ; 56(80): 12029-12032, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32901633

RESUMO

Ga-modified zeolites represent the most effective catalyst for catalytic transformation of light alkanes to aromatics. GaO+ ions and GaOx clusters on Ga/ZSM-5 zeolites are probed by solid-state NMR. These two types of Ga species show strong Lewis acidity and are quantitatively correlated with the catalytic activity of Ga/ZSM-5 for methane C-H bond activation. The interaction between the surface Ga species and zeolite is characterized by using double-resonance solid-state NMR spectroscopy, which provides direct spectroscopic evidence for the location and distribution of active Ga species. These results provide new insight into the understanding of the nature and role of Ga species in Ga-modified zeolites for the conversion of light alkanes.

19.
Angew Chem Int Ed Engl ; 59(44): 19532-19538, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-32449837

RESUMO

Lewis acid zeolites have found increasing application in the field of biomass conversion, in which the selective transformation of carbonyl-containing molecules is of particular importance due to their relevance in organic synthesis. Mechanistic insight into the activation of carbonyl groups on Lewis acid sites is challenging and critical for the understanding of the catalytic process, which requires the identification of reaction intermediates. Here we report the observation of a stable surface gem-diol-type species in the activation of acetone on Sn-ß zeolite. 13 C, 119 Sn, and 13 C-119 Sn double-resonance NMR spectroscopic studies demonstrate that only the open Sn site ((SiO)3 Sn-OH) on Sn-ß is responsible for the formation of the surface species. 13 C MAS NMR experiments together with density functional theory calculations suggest that the gem-diol-type species exhibits high reactivity and can serve as an active intermediate in the Meerwein-Ponndorf-Verley-Oppenauer (MPVO) reaction of acetone with cyclohexanol. The gem-diol-type species offers an energy-preferable pathway for the direct carbon-to-carbon hydrogen transfer between ketone and alcohol. The results provide new insights into the transformation of carbonyl-containing molecules catalyzed by Lewis acid zeolites.

20.
Phys Chem Chem Phys ; 22(22): 12644-12650, 2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32458929

RESUMO

The effects of salts on protein systems are not yet fully understood. We investigated the ionic dynamics of three halide salts (NaI, NaBr, and NaCl) with two protein models, namely poly(N-isopropylacrylamide) (PNIPAM) and poly(N,N-diethylacrylamide) (PDEA), using multinuclear NMR, dispersion corrected density functional theory (DFT-D) calculations and dynamic light scattering (DLS) methods. The variation in ionic line-widths and chemical shifts induced by the polymers clearly illustrates that anions rather than cations interact directly with the polymers. From the variable temperature measurements of the NMR transverse relaxation rates of anions, which characterize the polymer-anion interaction intensities, the evolution behaviors of Cl-/Br-/I- during phase transitions are similar in each polymer system but differ between the two polymer systems. The NMR transverse relaxation rates of anions change synchronously with the phase transition of PNIPAM upon heating, but they drop rapidly and vanish about 3-4.5 °C before the phase transition of PDEA. By combining the DFT-D and DLS data, the relaxation results imply that anions escape from the interacting sites with PDEA prior to full polymer dehydration or collapse, which can be attributed to the lack of anion-NH interactions. The different dynamic evolutions of the anions in the PNIPAM and PDEA systems give us an important clue for understanding the micro-mechanism of protein folding in a complex salt aqueous solvent.


Assuntos
Acrilamidas/química , Resinas Acrílicas/química , Teoria da Densidade Funcional , Polímeros/química , Proteínas/química , Brometos/química , Difusão Dinâmica da Luz , Modelos Moleculares , Cloreto de Sódio/química , Compostos de Sódio/química , Iodeto de Sódio/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...