Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(18): 27037-27051, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38502266

RESUMO

Graphene-based material is widely used to remove arsenic from water due to its layered structure with high surface area. Here, we have successfully synthesized Fe-La bimetallic modified graphite sheet materials to more efficiently remove As(III) from aqueous solution. The results showed that Fe-La-graphite sheets (FL-graphite sheets) have a larger specific surface area (194.28 m2·g-1) than graphite sheets (2.80 m2·g-1). The adsorption capacity of FL-graphite sheets for As(III) was 51.69 mg·g-1, which was higher than that of graphite sheets (21.91 mg·g-1), La-graphite sheets (26.06 mg·g-1), and Fe-graphite sheets (40.26 mg·g-1). The FL-graphite sheets conformed to the Freundlich and Dubinin-Radushkevich isotherm, and the maximum adsorption capacity was 53.62 mg·g-1. The removal process obeys intra-particle diffusion and pore diffusion for As(III). The results of batch adsorption experiments and characterization analyses demonstrated that oxidation, ligand exchange, and inner sphere complexation mechanisms involved in the adsorption of FL-graphite sheets to As(III) in comparison with graphite sheets. In addition, electrostatic attraction mechanism was found vital in the adsorption. Ecotoxicity assessment revealed that FL-graphite sheets have little influence on rice germination and growth, but reduced the toxicity of As(III) to rice. Therefore, the FL-graphite sheets have good practical application value in purifying As(III) polluted water with litter ecotoxicity.


Assuntos
Arsênio , Grafite , Ferro , Termodinâmica , Poluentes Químicos da Água , Grafite/química , Grafite/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Cinética , Arsênio/química , Ferro/química , Adsorção , Purificação da Água/métodos
2.
Antioxidants (Basel) ; 12(11)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-38001770

RESUMO

Antimony (Sb) is a hazardous metal element that is potentially toxic and carcinogenic. Melatonin (MT) is an indole compound with antioxidant properties that plays an essential role in plant growth and alleviates heavy metal stresses. Nevertheless, little is known about the effects and mechanisms of exogenous MT action on rice under Sb stress. The aim of this experiment was to explore the mechanism of MT reducing Sb toxicity in rice via hydroponics. The results showed that Sb stress significantly inhibited the growth of rice, including biomass, root parameters, and root viability. Exogenous MT obviously alleviated the inhibition of Sb stress on seedling growth and increased biomass, root parameters, and root viability by 15-55%. MT significantly reduced the total Sb content in rice and the subcellular Sb contents in roots by nearly 20-40% and 12.3-54.2% under Sb stress, respectively. MT significantly decreased the contents of malondialdehyde (MDA, by nearly 50%), ROS (H2O2 and O2·-, by nearly 20-30%), and RNS (NO and ONOO-) in roots under Sb stress, thus reducing oxidative stress and cell membrane damage. Furthermore, MT reversed Sb-induced phytotoxicity by increasing the activities of antioxidant enzymes (SOD, POD, CAT, and APX) by nearly 15% to 50% and by regulating the AsA-GSH cycle. In conclusion, this study demonstrates the potential of MT to maintain redox homeostasis and reduce Sb toxicity in rice cells, decreasing the content of Sb in rice and thereby alleviating the inhibition of Sb on rice growth. The results provided a feasible strategy for mitigating Sb toxicity in rice.

3.
Huan Jing Ke Xue ; 44(4): 2356-2364, 2023 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-37040984

RESUMO

To investigate the effect of exogenous application of melatonin (MT) on rice seedlings under antimony (Sb) stress, hydroponic experiments were carried out with rice seedlings (Huarun No.2). The fluorescent probe localization technology was used to locate the reactive oxygen species (ROS) in the root tips of rice seedlings, and the root viability, malondialdehyde (MDA) content, ROS (H2O2 and O2-·) content, antioxidant enzyme (SOD, POD, CAT, and APX) activities, and antioxidant (GSH, GSSG, AsA, and DHA) contents in the roots of rice seedlings were analyzed. The results showed that exogenous addition of MT could alleviate the adverse effects of Sb stress on the growth and increase the biomass of rice seedlings. Compared with the Sb treatment, the application of 100 µmol·L-1 MT increased rice root viability and total root length by 44.1% and 34.7% and reduced the content of MDA, H2O2, and O2-· by 30.0%, 32.7%, and 40.5%, respectively. Further, the MT treatment increased the activities of POD and CAT by 54.1% and 21.8%, respectively, and also regulated the AsA-GSH cycle. This research indicated that exogenous application of 100 µmol·L-1MT can promote the growth and antioxidant ability of rice seedlings and alleviate the damage of lipid peroxidation by Sb stress, thus improving the resistance of rice seedlings under Sb stress.


Assuntos
Melatonina , Oryza , Antioxidantes/metabolismo , Melatonina/farmacologia , Espécies Reativas de Oxigênio , Plântula , Oryza/metabolismo , Antimônio , Estresse Oxidativo , Peróxido de Hidrogênio/farmacologia
4.
Chemosphere ; 312(Pt 1): 137292, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36403814

RESUMO

Arsenic (As) is a common environmental pollutant that seriously interferes with the normal growth of organisms. There is an urgent need to take environment-safe and efficient strategies to mitigate As toxicity. Melatonin (MT) is a pleiotropic molecule that regulates plant growth and organ development and alleviates heavy metal stresses. The experiment aims to explore the mechanism of MT in reducing arsenite toxicity by hydroponic rice seedlings. The results showed that MT application reduced the As content in rice roots and shoots by 26.4% and 37.5%, respectively, and mainly decreased As content in the soluble fractions of the rice root cell. MT application also increased the As content of chelated-soluble pectin and alkali-soluble pectin in the cell wall by 14.7% and 74.4%, respectively. It promoted the generation of the functional group of the root cell walls by the FTIR analysis, indicating that MT may promote the fixation of As on the cell wall. Meanwhile, MT contributed to scavenging excess H2O2, reducing MDA content, and maintaining normal morphology of root cells by stimulating SOD, POD and CAT activities and increasing the level of GSH. The research deepens our understanding of how MT participates in maintaining redox homeostasis in rice cells, reducing As toxicity, and decreasing As concentration in rice seedlings, thereby providing more possibilities for reducing As accumulation in rice.


Assuntos
Arsênio , Arsenitos , Melatonina , Oryza , Arsênio/toxicidade , Antioxidantes/farmacologia , Melatonina/farmacologia , Arsenitos/toxicidade , Protoplastos , Peróxido de Hidrogênio , Raízes de Plantas , Plântula , Pectinas
5.
Environ Pollut ; 304: 119178, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35367286

RESUMO

Cadmium (Cd) is a potentially hazardous element with substantial biological toxicity, adversely affecting plant growth and physiological metabolism. Therefore, it is necessary to explore practical and environment-friendly approaches to reduce toxicity. Jasmonic acid (JA) is an endogenous growth regulator which helps plants defend against biological and abiotic stresses. To determine how JA help relieve Cd toxicity in rice, both laboratory and field experiments were implemented. In the seedling stage, the role of JA in mediating rice Cd tolerance was investigated via a fluorescent probe in vivo localization, Fourier Transform Infrared Spectroscopy (FTIR), and colorimetry. At the mature growth stage of rice, field experiments were implemented to research the effects of JA on the Cd uptake and translocation in rice. In the seedling stage of rice, we found that JA application increased the cell wall compartmentalization of Cd by promoting the Cd combination on chelated-soluble pectin of rice roots and inhibited Cd movement into protoplasts, thereby reducing the Cd content in the roots by 30.5% and in the shoots by 53.3%, respectively. Application of JA reduced H2O2 content and helped relieve Cd-induced peroxidation damage of membrane lipid by increasing the level of catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and glutathione (GSH), but had no significant effect on the superoxide dismutase (SOD) activity. Additionally, field experiments showed that foliar spraying of JA inhibited rice Cd transport from the stalk and root to the grain and reduced Cd concentration in grain by 29.7% in the high-Cd fields and 28.0% in the low-Cd fields. These results improve our understanding of how JA contributes to resistance against Cd toxicity in rice plants and reduces the accumulation of Cd in rice kernels.


Assuntos
Oryza , Poluentes do Solo , Antioxidantes/metabolismo , Cádmio/análise , Cádmio/química , Ciclopentanos , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Oryza/metabolismo , Oxilipinas/química , Oxilipinas/toxicidade , Raízes de Plantas/metabolismo , Plântula , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA