Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(10): e2303481, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37987244

RESUMO

Epithelial-to-mesenchymal transition (EMT) plays a crucial role in metastatic cancer progression, and current research, which relies heavily on 2D monolayer cultures, falls short in recapitulating the complexity of a 3D tumor microenvironment. To address this limitation, a transcriptomic meta-analysis is conducted on diverse cancer types undergoing EMT in 2D and 3D cultures. It is found that mechanotransduction is elevated in 3D cultures and is further intensified during EMT, but not during 2D EMT. This analysis reveals a distinct 3D EMT gene signature, characterized by extracellular matrix remodeling coordinated by angiopoietin-like 4 (Angptl4) along with other canonical EMT regulators. Utilizing hydrogel-based 3D matrices with adjustable mechanical forces, 3D cancer cultures are established at varying physiological stiffness levels. A YAP:EGR-1 mediated up-regulation of Angptl4 expression is observed, accompanied by an upregulation of mesenchymal markers, at higher stiffness during cancer EMT. Suppression of Angptl4 using antisense oligonucleotides or anti-cAngptl4 antibodies leads to a dose-dependent abolishment of EMT-mediated chemoresistance and tumor self-organization in 3D, ultimately resulting in diminished metastatic potential and stunted growth of tumor xenografts. This unique programmable 3D cancer cultures simulate stiffness levels in the tumor microenvironment and unveil Angptl4 as a promising therapeutic target to inhibit EMT and impede cancer progression.


Assuntos
Mecanotransdução Celular , Neoplasias , Humanos , Linhagem Celular Tumoral , Microambiente Tumoral , Fenômenos Mecânicos , Angiopoietinas , Transição Epitelial-Mesenquimal/genética , Neoplasias/tratamento farmacológico
2.
Sci Rep ; 13(1): 19852, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37964016

RESUMO

Feedback devices were developed to guide resuscitations as targets recommended by various guidelines are difficult to achieve. Yet, there is limited evidence to support their use for in-hospital cardiac arrests (IHCA), and they did not correlate with patient outcomes. Therefore, this study has investigated the compression quality and patient outcomes in IHCA with the use of a feedback device via a retrospective study of inpatient code blue activations in a Singapore hospital over one year. The primary outcome was compression quality and secondary outcomes were survival, downtime and neurological status. 64 of 110 (58.2%) cases were included. Most resuscitations (71.9%) met the recommended chest compression fraction (CCF, defined as the proportion of time spent on compressions during resuscitation) despite overall quality being suboptimal. Greater survival to discharge and better neurological status in resuscitated patients respectively correlated with higher median CCF (p = 0.040 and 0.026 respectively) and shorter downtime (p < 0.001 and 0.001 respectively); independently, a higher CCF correlated with a shorter downtime (p = 0.014). Overall, this study demonstrated that reducing interruptions is crucial for good outcomes in IHCA. However, compression quality remained suboptimal despite feedback device implementation, possibly requiring further simulation training and coaching. Future multicentre studies incorporating these measures should be explored.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Humanos , Estudos Retrospectivos , Retroalimentação , Parada Cardíaca/terapia , Pressão
3.
Adv Sci (Weinh) ; 10(31): e2301714, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37759388

RESUMO

Metastasis involves epithelial-to-mesenchymal transition (EMT), a process that is regulated by complex gene networks, where their deliberate disruption may yield a promising outcome. However, little is known about mechanisms that coordinate these metastasis-associated networks. To address this gap, hub genes with broad engagement across various human cancers by analyzing the transcriptomes of different cancer cell types undergoing EMT are identified. The oncogenic signaling adaptor protein tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG) is ranked top for its clinical relevance and impact. The cellular kinome and transcriptome data are surveyed to construct the regulome of YWHAG, revealing stress responses and metabolic processes during cancer EMT. It is demonstrated that a YWHAG-dependent cytoprotective mechanism in the regulome is embedded in EMT-associated networks to protect cancer cells from oxidative catastrophe through enhanced autophagy during EMT. YWHAG deficiency results in a rapid accumulation of reactive oxygen species (ROS), delayed EMT, and cell death. Tumor allografts show that metastasis potential and overall survival time are correlated with the YWHAG expression level of cancer cell lines. Metastasized tumors have higher expression of YWHAG and autophagy-related genes than primary tumors. Silencing YWHAG diminishes primary tumor volumes, prevents metastasis, and prolongs the median survival period of the mice.


Assuntos
Neoplasias , Humanos , Animais , Camundongos , Neoplasias/genética , Transdução de Sinais , Transição Epitelial-Mesenquimal/genética , Morte Celular , Estresse Oxidativo/genética , Proteínas 14-3-3/genética
4.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499091

RESUMO

Fatty liver disease is an emerging contributor to disease burden worldwide. The past decades of work established the heterogeneous nature of non-alcoholic fatty liver disease (NAFLD) etiology and systemic contributions to the pathogenesis of the disease. This called for the proposal of a redefinition in 2020 to that of metabolic dysfunction-associated fatty liver disease (MAFLD) to better reflect the current understanding of the disease. To date, several clinical cohort studies comparing NAFLD and MAFLD hint at the relevancy of the new nomenclature in enriching for patients with more severe hepatic injury and extrahepatic comorbidities. However, the underlying systemic pathogenesis is still not fully understood. Preclinical animal models have been imperative in elucidating key biological mechanisms in various contexts, including intrahepatic disease progression, interorgan crosstalk and systemic dysregulation. Furthermore, they are integral in developing novel therapeutics against MAFLD. However, substantial contextual variabilities exist across different models due to the lack of standardization in several aspects. As such, it is crucial to understand the strengths and weaknesses of existing models to better align them to the human condition. In this review, we consolidate the implications arising from the change in nomenclature and summarize MAFLD pathogenesis. Subsequently, we provide an updated evaluation of existing MAFLD preclinical models in alignment with the new definitions and perspectives to improve their translational relevance.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Modelos Animais , Progressão da Doença , Reações Cruzadas
5.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613602

RESUMO

NAFLD is the most common chronic liver disease worldwide, occurring in both obese and lean patients. It can lead to life-threatening liver diseases and nonhepatic complications, such as cirrhosis and cardiovascular diseases, that burden public health and the health care system. Current care is weight loss through diet and exercise, which is a challenging goal to achieve. However, there are no FDA-approved pharmacotherapies for NAFLD. This review thoroughly examines the clinical trial findings from 22 drugs (Phase 2 and above) and evaluates the future direction that trials should take for further drug development. These trialed drugs can broadly be categorized into five groups-hypoglycemic, lipid-lowering, bile-pathway, anti-inflammatory, and others, which include nutraceuticals. The multitude of challenges faced in these yet-to-be-approved NAFLD drug trials provided insight into a few areas of improvement worth considering. These include drug repurposing, combinations, noninvasive outcomes, standardization, adverse event alleviation, and the need for precision medicine with more extensive consideration of NAFLD heterogenicity in drug trials. Understandably, every evolution of the drug development landscape lies with its own set of challenges. However, this paper believes in the importance of always learning from lessons of the past, with each potential improvement pushing clinical trials an additional step forward toward discovering appropriate drugs for effective NAFLD management.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Cirrose Hepática/tratamento farmacológico , Obesidade/tratamento farmacológico , Suplementos Nutricionais
6.
Cell Death Differ ; 27(9): 2668-2680, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32313198

RESUMO

The incidence of nonmelanoma skin cancer (NMSC) has been increasing worldwide. Most studies have highlighted the importance of cancer-associated fibroblasts (CAFs) in NMSC progression. However much less is known about the communication between normal fibroblasts and epithelia; disruption of this communication affects tumor initiation and the latency period in the emergence of tumors. Delineating the mechanism that mediates this epithelial-mesenchymal communication in NMSC could identify more effective targeted therapies. The nuclear receptor PPARß/δ in fibroblasts has been shown to modulate adjacent epithelial cell behavior, however, its role in skin tumorigenesis remains unknown. Using chemically induced skin carcinogenesis, we showed that FSPCre-Pparb/dex4 mice, whose Pparb/d gene was selectively deleted in fibroblasts, had delayed emergence and reduced tumor burden compared with control mice (Pparb/dfl/fl). However, FSPCre-Pparb/dex4-derived tumors showed increased proliferation, with no difference in differentiation, suggesting delayed tumor initiation. Network analysis revealed a link between dermal Pparb/d and TGF-ß1 with epidermal NRF2 and Nox4. In vitro investigations showed that PPARß/δ deficiency in fibroblasts increased epidermal Nox4-derived H2O2 production, which triggered an NRF2-mediated antioxidant response. We further showed that H2O2 upregulated NRF2 mRNA via the B-Raf-MEK1/2 pathway. The enhanced NRF2 response altered the activities of PTEN, Src, and AKT. In vivo, we detected the differential phosphorylation profiles of B-Raf, MEK1/2, PTEN, Src, and AKT in the vehicle-treated and chemically treated epidermis of FSPCre-Pparb/dex4 mice compared with that in Pparb/dfl/fl mice, prior to the first appearance of tumors in Pparb/dfl/fl. Our study revealed a role for fibroblast PPARß/δ in the epithelial-mesenchymal communication involved in cellular redox homeostasis.


Assuntos
Fibroblastos/metabolismo , Fibroblastos/patologia , PPAR delta/deficiência , PPAR beta/deficiência , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Epiderme/patologia , Redes Reguladoras de Genes , Glicoproteínas/metabolismo , Queratinócitos/metabolismo , Cinética , Melanoma/metabolismo , Melanoma/patologia , Camundongos Transgênicos , NADPH Oxidase 4/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas de Neoplasias/metabolismo , PPAR delta/metabolismo , PPAR beta/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/genética , Fator de Crescimento Transformador beta1/metabolismo , Carga Tumoral
7.
Mol Cancer ; 18(1): 65, 2019 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-30927919

RESUMO

Field cancerization and metastasis are the leading causes for cancer recurrence and mortality in cancer patients. The formation of primary, secondary tumors or metastasis is greatly influenced by multifaceted tumor-stroma interactions, in which stromal components of the tumor microenvironment (TME) can affect the behavior of the cancer cells. Many studies have identified cytokines and growth factors as cell signaling molecules that aid cell to cell communication. However, the functional contribution of reactive oxygen species (ROS), a family of volatile chemicals, as communication molecules are less understood. Cancer cells and various tumor-associated stromal cells produce and secrete a copious amount of ROS into the TME. Intracellular ROS modulate cell signaling cascades that aid in the acquisition of several hallmarks of cancers. Extracellular ROS help to propagate, amplify, and effectively create a mutagenic and oncogenic field which facilitate the formation of multifoci tumors and act as a springboard for metastatic tumor cells. In this review, we summarize our current knowledge of ROS as atypical paracrine signaling molecules for field cancerization and metastasis. Field cancerization and metastasis are often discussed separately; we offer a model that placed these events with ROS as the focal instigating agent in a broader "seed-soil" hypothesis.


Assuntos
Comunicação Celular , Metástase Neoplásica , Neoplasias/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Neoplasias/metabolismo , Transdução de Sinais
8.
Astrophys J ; 879(2): 124, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32690977

RESUMO

We examine the different element abundances exhibited by the closed loop solar corona and the slow speed solar wind. Both are subject to the first ionization potential (FIP) effect, the enhancement in coronal abundance of elements with FIP below 10 eV (e.g., Mg, Si, Fe) with respect to high-FIP elements (e.g., O, Ne, Ar), but with subtle differences. Intermediate elements, S, P, and C, with FIP just above 10 eV, behave as high-FIP elements in closed loops, but are fractionated more like low-FIP elements in the solar wind. On the basis of FIP fractionation by the ponderomotive force in the chromosphere, we discuss fractionation scenarios where this difference might originate. Fractionation low in the chromosphere where hydrogen is neutral enhances the S, P, and C abundances. This arises with nonresonant waves, which are ubiquitous in open field regions, and is also stronger with torsional Alfvén waves, as opposed to shear (i.e., planar) waves. We discuss the bearing these findings have on models of interchange reconnection as the source of the slow speed solar wind. The outflowing solar wind must ultimately be a mixture of the plasma in the originally open and closed fields, and the proportions and degree of mixing should depend on details of the reconnection process. We also describe novel diagnostics in ultraviolet and extreme ultraviolet spectroscopy now available with these new insights, with the prospect of investigating slow speed solar wind origins and the contribution of interchange reconnection by remote sensing.

9.
Mol Cancer ; 17(1): 152, 2018 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-30342537

RESUMO

Overcoming multidrug resistance has always been a major challenge in cancer treatment. Recent evidence suggested epithelial-mesenchymal transition plays a role in MDR, but the mechanism behind this link remains unclear. We found that the expression of multiple ABC transporters was elevated in concordance with an increased drug efflux in cancer cells during EMT. The metastasis-related angiopoietin-like 4 (ANGPTL4) elevates cellular ATP to transcriptionally upregulate ABC transporters expression via the Myc and NF-κB signaling pathways. ANGPTL4 deficiency reduced IC50 of anti-tumor drugs and enhanced apoptosis of cancer cells. In vivo suppression of ANGPTL4 led to higher accumulation of cisplatin-DNA adducts in primary and metastasized tumors, and a reduced metastatic tumor load. ANGPTL4 empowered cancer cells metabolic flexibility during EMT, securing ample cellular energy that fuels multiple ABC transporters to confer EMT-mediated chemoresistance. It suggests that metabolic strategies aimed at suppressing ABC transporters along with energy deprivation of EMT cancer cells may overcome drug resistance.


Assuntos
Proteína 4 Semelhante a Angiopoietina/antagonistas & inibidores , Proteína 4 Semelhante a Angiopoietina/metabolismo , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Metabolismo Energético/efeitos dos fármacos , Neoplasias/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...