Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168995

RESUMO

Tandem repeat (TR) variation is associated with gene expression changes and numerous rare monogenic diseases. Although long-read sequencing provides accurate full-length sequences and methylation of TRs, there is still a need for computational methods to profile TRs across the genome. Here we introduce the Tandem Repeat Genotyping Tool (TRGT) and an accompanying TR database. TRGT determines the consensus sequences and methylation levels of specified TRs from PacBio HiFi sequencing data. It also reports reads that support each repeat allele. These reads can be subsequently visualized with a companion TR visualization tool. Assessing 937,122 TRs, TRGT showed a Mendelian concordance of 98.38%, allowing a single repeat unit difference. In six samples with known repeat expansions, TRGT detected all expansions while also identifying methylation signals and mosaicism and providing finer repeat length resolution than existing methods. Additionally, we released a database with allele sequences and methylation levels for 937,122 TRs across 100 genomes.

2.
Natl Sci Rev ; 9(3): nwab192, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35382356

RESUMO

Intra-tumor heterogeneity (ITH) is a key challenge in cancer treatment, but previous studies have focused mainly on the genomic alterations without exploring phenotypic (transcriptomic and immune) heterogeneity. Using one of the largest prospective surgical cohorts for hepatocellular carcinoma (HCC) with multi-region sampling, we sequenced whole genomes and paired transcriptomes from 67 HCC patients (331 samples). We found that while genomic ITH was rather constant across stages, phenotypic ITH had a very different trajectory and quickly diversified in stage II patients. Most strikingly, 30% of patients were found to contain more than one transcriptomic subtype within a single tumor. Such phenotypic ITH was found to be much more informative in predicting patient survival than genomic ITH and explains the poor efficacy of single-target systemic therapies in HCC. Taken together, we not only revealed an unprecedentedly dynamic landscape of phenotypic heterogeneity in HCC, but also highlighted the importance of studying phenotypic evolution across cancer types.

3.
Clin Cancer Res ; 27(21): 5939-5950, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34261696

RESUMO

PURPOSE: Despite the established role of EGFR tyrosine kinase inhibitors (TKIs) in EGFR-mutated NSCLC, drug resistance inevitably ensues, with a paucity of treatment options especially in EGFR T790M-negative resistance. EXPERIMENTAL DESIGN: We performed whole-exome and transcriptome analysis of 59 patients with first- and second-generation EGFR TKI-resistant metastatic EGFR-mutated NSCLC to characterize and compare molecular alterations mediating resistance in T790M-positive (T790M+) and -negative (T790M-) disease. RESULTS: Transcriptomic analysis revealed ubiquitous loss of adenocarcinoma lineage gene expression in T790M- tumors, orthogonally validated using multiplex IHC. There was enrichment of genomic features such as TP53 alterations, 3q chromosomal amplifications, whole-genome doubling and nonaging mutational signatures in T790M- tumors. Almost half of resistant tumors were further classified as immunehot, with clinical outcomes conditional on immune cell-infiltration state and T790M status. Finally, using a Bayesian statistical approach, we explored how T790M- and T790M+ disease might be predicted using comprehensive genomic and transcriptomic profiles of treatment-naïve patients. CONCLUSIONS: Our results illustrate the interplay between genetic alterations, cell lineage plasticity, and immune microenvironment in shaping divergent TKI resistance and outcome trajectories in EGFR-mutated NSCLC. Genomic and transcriptomic profiling may facilitate the design of bespoke therapeutic approaches tailored to a tumor's adaptive potential.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Receptores ErbB/genética , Humanos , Proteínas Tirosina Quinases/genética
4.
Nat Genet ; 52(2): 177-186, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32015526

RESUMO

Lung cancer is the world's leading cause of cancer death and shows strong ancestry disparities. By sequencing and assembling a large genomic and transcriptomic dataset of lung adenocarcinoma (LUAD) in individuals of East Asian ancestry (EAS; n = 305), we found that East Asian LUADs had more stable genomes characterized by fewer mutations and fewer copy number alterations than LUADs from individuals of European ancestry. This difference is much stronger in smokers as compared to nonsmokers. Transcriptomic clustering identified a new EAS-specific LUAD subgroup with a less complex genomic profile and upregulated immune-related genes, allowing the possibility of immunotherapy-based approaches. Integrative analysis across clinical and molecular features showed the importance of molecular phenotypes in patient prognostic stratification. EAS LUADs had better prediction accuracy than those of European ancestry, potentially due to their less complex genomic architecture. This study elucidated a comprehensive genomic landscape of EAS LUADs and highlighted important ancestry differences between the two cohorts.


Assuntos
Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Mutação , Adenocarcinoma de Pulmão/etiologia , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/terapia , Idoso , Povo Asiático/genética , Estudos de Coortes , Variações do Número de Cópias de DNA , Receptores ErbB/genética , Exoma , Feminino , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/terapia , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas p21(ras)/genética , Singapura , Proteína Supressora de Tumor p53/genética
5.
Curr Biol ; 28(12): 1882-1895.e7, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29861135

RESUMO

Profilin functions with formin in actin assembly, a process that regulates multiple aspects of plant development and immune responses. High-level eukaryotes contain multiple isoforms of profilin, formin, and actin, whose partner-specific interactions in actin assembly are not completely understood in plant development and defense responses. To examine the functionally distinct interactions between profilin and formin, we studied all five Arabidopsis profilins and their interactions with formin by using both in vitro biochemical and in vivo cell biology approaches. Unexpectedly, we found a previously undescribed negative regulatory function of AtPRF3 in AtFH1-mediated actin polymerization. The N-terminal 37 residues of AtPRF3 were identified to play a predominant role in inhibiting formin-mediated actin nucleation via their high affinity for the formin polyproline region and their triggering of the oligomerization of AtPRF3. Both in vivo and in vitro mechanistic studies of AtPRF3 revealed a universal mechanism in which the weak interaction between profilin and formin positively regulates actin assembly by ensuring rapid recycling of profilin, whereas profilin oligomerization negatively regulates actin polymerization. Upon recognition of the pathogen-associated molecular pattern, the gene transcription and protein degradation of AtPRF3 are modulated for actin assembly during plant innate immunity. The prf3 Arabidopsis plants show higher sensitivity to the bacterial flagellum peptide in both the plant growth and ROS responses. These findings demonstrate a profilin-mediated actin assembly mechanism underlying the plant immune responses.


Assuntos
Actinas/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Imunidade Vegetal/genética , Profilinas/genética , Citoesqueleto de Actina/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Forminas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Moléculas com Motivos Associados a Patógenos/farmacologia , Profilinas/metabolismo
6.
Proteins ; 84(8): 1134-46, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27153477

RESUMO

Aggregation of proteins into amyloid is the central hallmark of a number of protein diseases. Most studies were carried out on the aggregation between proteins of similar species. However, it was observed that some patients with certain protein disease can easily acquire another unrelated protein disease. As such, it is also important to examine aggregation between proteins of different species. Usually aggregation between proteins of the same species can be attributed to the similarity between their respective amino acid sequences. In this article, we were motivated by an experimental study of aggregation between amylin (Islet Amyloid Polypeptide, IAPP) and prion106-126 (PrP106-126) fragment (JACS, 2013, 135, 13582-9). It was found that the two non-homologous peptides can aggregate quickly to form fibrils in the presence of negatively charged lipid bilayer. We attempted to elucidate the molecular mechanism of the early stage of dimerization of these two peptides through extensive replica exchange molecular dynamics simulations. Conformations consisting of various degrees of ß-sheets structures, both intra-chain and inter-chain, were found in the simulations. The conformations of the aggregated complex are very diverse, which suggests that the cross-species fibrils formed between the two proteins are highly polymorphic. The driving forces are mainly hydrophobic interactions, including aromatic-aliphatic interactions. The palindromic region of PrP106-126 and SNNFGAIL region of IAPP were found to play important roles in the interaction. Our study sheds insight into the exciting research of protein cross-fibrillation. Proteins 2016; 84:1134-1146. © 2016 Wiley Periodicals, Inc.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química , Príons/química , Agregados Proteicos , Sequência de Aminoácidos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Análise de Componente Principal , Estrutura Secundária de Proteína , Eletricidade Estática , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...