Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37372615

RESUMO

Stingless bee honey (SBH) is a natural, sweet product produced by stingless bees (Meliponini tribe) that has been used as a traditional medicine to treat various illnesses. It has been shown that SBH has high nutritional value and health-promoting properties due to the presence of plant bioactive compounds from different botanical flora of the foraged nectar. In this study, the antioxidant activities of seven monofloral honeys from acacia, agarwood, coconut, dwarf mountain pine (DMP), Mexican creeper (MC), rubber, and starfruit botanical origins were investigated. The antioxidant properties of SBH studied had a range from 19.7 to 31.4 mM TE/mg for DPPH assays, 16.1 to 29.9 mM TE/mg for ABTS assays, 69.0 to 167.6 mM TE/mg for ORAC assays, and 45.5 to 89.3 mM Fe2+/mg for FRAP assays. Acacia honey showed the highest level of antioxidant properties. The models built from mass spectral fingerprints from direct ambient mass spectrometry showed distinct clusters of SBH by botanical origin and correlated with the antioxidant properties. An untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics approach was undertaken to identify the antioxidant compounds that could explain the unique antioxidant and compositional profiles of the monofloral SBH by its botanical origin. The antioxidants that were identified predominantly consisted of alkaloids and flavonoids. Flavonoid derivatives, which are potent antioxidants, were found to be key markers of acacia honey. This work provides the fundamental basis for the identification of potential antioxidant markers in SBH associated with the botanical origin of the foraged nectar.

2.
Rapid Commun Mass Spectrom ; 34(1): e8558, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31429149

RESUMO

RATIONALE: Over the last ten years, helium direct analysis in real time time-of-flight mass spectrometry (He DART-TOFMS) has become an established technique in rapid screening of forensic drugs to decrease the time necessary to triage forensic drug cases, therefore contributing to backlog reduction and more timely criminal prosecution. Recently, we demonstrated that N2 DART was able to efficiently ionize all polar compounds except for a few extremely small ones such as methanol and acetonitrile. Therefore, N2 DART-TOFMS should be a suitable technique for rapid screening of forensic drugs. METHODS: Nitrogen direct analysis in real time time-of-flight mass spectrometry (N2 DART-TOFMS) was performed using a JEOL AccuTOF mass spectrometer with an IonSense DART-100 ion source. A 3-min analytical protocol was used for the analysis of each sample. Sample introduction was accomplished by moving the closed end of a melting point capillary where approximately 1 µL sample solution was deposited or the exposed inside of a freshly cut tablet across the N2 gas stream between the DART-100 ion source and orifice 1 of the AccuTOF. RESULTS: Ten commonly abused drugs, eight synthetic cannabinoids and four controlled prescription drugs (CPDs) were analyzed. The limit of detection (LOD) was determined to be approximately 10 µg/mL or 10 pg in quantities. All drugs at the LOD level were positively identified using their [M + H]+ ions with mass errors less than 5 mDa. The identification were further supported by in-source fragment ions and characteristic N2 DART ions that are not commonly generated by He DART, e.g. [M + H + O]+ and [M + H + 2O]+ ions. CONCLUSIONS: It was concluded that the 3-min analytical protocol could be utilized in the analysis of seized drugs in the form of tablets and powders or prepared in solution. In consideration that N2 is readily available in the air and He is a non-renewable resource, N2 DART-TOFMS is a greener, cheaper and more convenient alternative to He DART-TOFMS in rapid screening of forensic drugs.

3.
J Am Soc Mass Spectrom ; 29(4): 640-650, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29392686

RESUMO

Nitrogen can be an inexpensive alternative to helium used by direct analysis in real time (DART), especially in consideration of the looming helium shortage. Therefore, the ionization mechanism of positive-ion N2 DART has been systematically investigated. Our experiments suggest that a range of metastable nitrogen species with a variety of internal energies existed and all of them were less energetic than metastable helium atoms. However, compounds with ionization energies (IE) equal to or lower than 10.2 eV (all organic compounds except the extremely small ones) can be efficiently ionized. Because N2 DART was unable to efficiently ionize ambient moisture and common organic solvents such as methanol and acetonitrile, the most important ionization mechanism was direct Penning ionization followed by self-protonation of polar compounds generating [M+H]+ ions. On the other hand, N2 DART was able to efficiently ionize ammonia, which was beneficial in the ionization of hydrogen-bonding compounds with proton affinities (PA) weaker than ammonia generating [M+NH4]+ ions and large PAHs generating [M+H]+ ions through proton transfer. N2 DART was also able to efficiently ionize NO, which led to the ionization of nonpolar compounds such as alkanes and small aromatics generating [M-(2m+1)H]+ (m=0,1…) ions. Lastly, metastable nitrogen species was also able to produce oxygen atoms, which resulted in increased oxygen adducts as the polarity of organic compounds decreased. In comparison with He DART, N2 DART was approximately one order of magnitude less sensitive in generating [M+H]+ ions, but could be more sensitive in generating [M+NH4]+ ions. Graphical Abstract ᅟ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...