Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Vis Comput Graph ; 30(5): 2464-2473, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38437126

RESUMO

Redirected walking (RDW) enables users to walk naturally within a virtual environment that is larger than the physical environment. Recently, several artificial potential field (APF) and alignment-based redirected controllers have been developed and have been demonstrated to significantly outperform conventional controllers. APF Steer-to-Gradient (APF-S2G) and APF Redirected Walking (APF-RDW) utilize the negative gradient and the total force vector, respectively, which are localized to the user's position. These vectors usually point towards the opposite wall when the user is in corridors, resulting in frequent resets within those regions. This paper introduces the APF Steer-to-Target (APF-S2T), a redirected controller that first finds the target sample point with the lowest score in the user's walkable area in both physical and virtual environments. The score of a sample point is determined by the APF value at the point and the distance from the user's position. The direction from the user's position to the target point is then used as the steering direction for setting RDW gains. We conducted a simulation-based evaluation to compare APF-S2T, APF-S2G, APF-RDW, Visibility Polygon-based alignment (Vis.-Poly.) and Alignment-Optimized controllers in terms of the number of resets and the average distance between resets. The results indicated that APF-S2T significantly outperformed the state-of-the-art controllers.

2.
IEEE Trans Vis Comput Graph ; 29(11): 4556-4566, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37788204

RESUMO

Redirected walking allows users to naturally locomote within virtual environments that are larger than or different in layout from the physically tracked space. In this paper, we proposed novel optimization-driven alignment-based and Artificial Potential Field (APF) redirected walking controllers, as well as an integrated version of the two. The first two controllers employ objective functions of one variable, which is the included angle between the user's heading vector and the target vector originating from the user's physical position. The optimized angle represents the physical cell that is best aligned with the virtual cell or the target vector on which the designated point has the minimum APF value. The derived optimized angle is used to finely set RDW gains. The two objective functions can be optimized simultaneously, leading to an integrated controller that is potentially able to take advantage of the alignment-based controller and APF-based controller. Through extensive simulation-based studies, we found that the proposed alignment-based and integrated controllers significantly outperform the state-of-the-art controllers and the proposed APF based controller in terms of the number of resets. Furthermore, the proposed alignment controller and integrated controller provide a more uniform likelihood distribution across distance between resets, as compared to the other controllers.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37027728

RESUMO

Virtual Reality (VR) is well-known for its use in interdisciplinary applications and research. The visual representation of these applications could vary depending in their purpose and hardware limitation, and in those situations could require an accurate perception of size for task performance. However, the relationship between size perception and visual realism in VR has not yet been explored. In this contribution, we conducted an empirical evaluation using a between-subject design over four conditions of visual realism, namely Realistic, Local Lighting, Cartoon, and Sketch on size perception of target objects in the same virtual environment. Additionally, we gathered participants' size estimates in the real world via a within-subject session. We measured size perception using concurrent verbal reports and physical judgments. Our result showed that although participants' size perception was accurate in the realistic condition, surprisingly they could still tune into the invariant but meaningful information in the environment to accurately estimate the size of targets in the non-photorealistic conditions as well. We additionally found that size estimates in verbal and physical responses were generally different in real world and VR viewing and were moderated by trial presentation over time and target object widths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...