Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 8(9): 9341-8, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25093682

RESUMO

We have successfully demonstrated a great advantage of plasmonic Au nanoparticles for efficient enhancement of Cu(In,Ga)Se2(CIGS) flexible photovoltaic devices. The incorporation of Au NPs can eliminate obstacles in the way of developing ink-printing CIGS flexible thin film photovoltaics (TFPV), such as poor absorption at wavelengths in the high intensity region of solar spectrum, and that occurs significantly at large incident angle of solar irradiation. The enhancement of external quantum efficiency and photocurrent have been systematically analyzed via the calculated electromagnetic field distribution. Finally, the major benefits of the localized surface plasmon resonances (LSPR) in visible wavelength have been investigated by ultrabroadband pump-probe spectroscopy, providing a solid evidence on the strong absorption and reduction of surface recombination that increases electron-hole generation and improves the carrier transportation in the vicinity of pn-juction.

2.
Opt Express ; 22(3): 2860-7, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663578

RESUMO

Because of the Sun's movement across the sky, broadband and omnidirectional light harvesting is a major development in photovoltaic technology. This study reports the fabrication and characterization of flexible-textured polydimethylsiloxane (PDMS) film on Cu(In,Ga)Se2 (CIGS) solar cells, which is one of the simplest and cheapest peel-off processes for fabricating a three-dimensional structure. A cell containing a textured PDMS film enhanced the short-circuit current density from 22.12 to 23.93 mA/cm2 in a simulated one-sun scenario. The omnidirectional antireflection of CIGS solar cells containing various PDMS films is also investigated. This study uses an angle-resolved reflectance spectroscope to investigate the omnidirectional and broadband optical properties of the proposed PDMS film. This improvement in light harvesting is attributable to the scattering of the PDMS film and the gradual refractive index profile between the PDMS microstructures and air. The flexible-textured PDMS film is suitable for creating an antireflective coating for a diverse range of photovoltaic devices.

3.
Nanoscale ; 5(10): 4270-6, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23549292

RESUMO

Broadband and omnidirectional light harvesting is important in photovoltaic technology because of its wide spectral range of radiation and the sun's movement. This study reports the fabrication and characterization of zinc oxide (ZnO) dandelions on Cu(In,Ga)Se2 (CIGS) solar cells. The fabrication of dandelions involves the combination of self-assembled polystyrene (PS) nanospheres and the hydrothermal method, which is one of the simplest and cheapest methods of fabricating a three-dimensional, closely packed periodic structure. This study also investigates the optimization on dimension of the PS nanospheres using the rigorous coupled-wave analysis (RCWA) method. This study uses an angle-resolved reflectance spectroscope and a homemade rotatable photo I-V measurement to investigate the omnidirectional and broadband antireflections of the proposed dandelion structure. Under a simulated one-sun condition and a light incident angle of up to 60°, cells with ZnO dandelions arrays enhanced the short-circuit current density by 31.87%. Consequently, ZnO dandelions are suitable for creating an omnidirectionally antireflective coating for photovoltaic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...