Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 105(17): 173902, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-21231047

RESUMO

A unique characteristic of transient stimulated Raman scattering, in which the spatiotemporal evolution of the fields and the molecular excitation follow a universal self-similarity law, is observed in gas-filled photonic crystal fibers. As the input laser power is increased, the coupled system "optical fields + molecular excitation" goes through the same phases of time evolution but at a higher rate. Using the self-similarity law we are able to completely reconstruct the evolution of the pump and Stokes fields from one measurement.

2.
Phys Rev Lett ; 103(18): 183902, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19905807

RESUMO

Using a hydrogen-filled hollow-core photonic crystal fiber as a nonlinear optical gas cell, we study amplification of ns-laser pulses by backward rotational Raman scattering. We find that the amplification process has two characteristic stages. Initially, the pulse energy grows and its duration shortens due to gain saturation at the trailing edge of the pulse. This phase is followed by formation of a symmetric pulse with a duration significantly shorter than the phase relaxation time of the Raman transition. Stabilization of the Stokes pulse profile to a solitonlike hyperbolic secant shape occurs as a result of nonlinear amplification at its front edge and nonlinear absorption at its trailing edge (caused by energy conversion back to the pump field), leading to a reshaped pulse envelope that travels at superluminal velocity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA