Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38950903

RESUMO

In higher eukaryotes, tRNA methyltransferase 10A (TRMT10A) is responsible for N1-methylguanosine modification at position nine of various cytoplasmic tRNAs. Pathogenic mutations in TRMT10A cause intellectual disability, microcephaly, diabetes, and short stature in humans, and generate cytotoxic tRNA fragments in cultured cells; however, it is not clear how TRMT10A supports codon translation or brain functions. Here, we generated Trmt10a null mice and showed that tRNAGln(CUG) and initiator methionine tRNA levels were universally decreased in various tissues; the same was true in a human cell line lacking TRMT10A. Ribosome profiling of mouse brain revealed that dysfunction of TRMT10A causes ribosome slowdown at the Gln(CAG) codon and increases translation of Atf4 due to higher frequency of leaky scanning of its upstream open reading frames. Broadly speaking, translation of a subset of mRNAs, especially those for neuronal structures, is perturbed in the mutant brain. Despite not showing discernable defects in the pancreas, liver, or kidney, Trmt10a null mice showed lower body weight and smaller hippocampal postsynaptic densities, which is associated with defective synaptic plasticity and memory. Taken together, our study provides mechanistic insight into the roles of TRMT10A in the brain, and exemplifies the importance of universal tRNA modification during translation of specific codons.

2.
Nucleic Acids Res ; 52(3): 1341-1358, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38113276

RESUMO

MTU1 controls intramitochondrial protein synthesis by catalyzing the 2-thiouridine modification of mitochondrial transfer RNAs (mt-tRNAs). Missense mutations in the MTU1 gene are associated with life-threatening reversible infantile hepatic failure. However, the molecular pathogenesis is not well understood. Here, we investigated 17 mutations associated with this disease, and our results showed that most disease-related mutations are partial loss-of-function mutations, with three mutations being particularly severe. Mutant MTU1 is rapidly degraded by mitochondrial caseinolytic peptidase (CLPP) through a direct interaction with its chaperone protein CLPX. Notably, knockdown of CLPP significantly increased mutant MTU1 protein expression and mt-tRNA 2-thiolation, suggesting that accelerated proteolysis of mutant MTU1 plays a role in disease pathogenesis. In addition, molecular dynamics simulations demonstrated that disease-associated mutations may lead to abnormal intermolecular interactions, thereby impairing MTU1 enzyme activity. Finally, clinical data analysis underscores a significant correlation between patient prognosis and residual 2-thiolation levels, which is partially consistent with the AlphaMissense predictions. These findings provide a comprehensive understanding of MTU1-related diseases, offering prospects for modification-based diagnostics and novel therapeutic strategies centered on targeting CLPP.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Peptídeo Hidrolases , tRNA Metiltransferases , Humanos , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Peptídeo Hidrolases/genética , Proteólise , RNA Mitocondrial/metabolismo , RNA de Transferência/metabolismo , tRNA Metiltransferases/genética , Proteínas Mitocondriais/metabolismo
3.
EMBO J ; 42(16): e111133, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37431790

RESUMO

Naked mole-rats (NMRs) have exceptional longevity and are resistant to age-related physiological decline and diseases. Given the role of cellular senescence in aging, we postulated that NMRs possess unidentified species-specific mechanisms to prevent senescent cell accumulation. Here, we show that upon induction of cellular senescence, NMR fibroblasts underwent delayed and progressive cell death that required activation of the INK4a-retinoblastoma protein (RB) pathway (termed "INK4a-RB cell death"), a phenomenon not observed in mouse fibroblasts. Naked mole-rat fibroblasts uniquely accumulated serotonin and were inherently vulnerable to hydrogen peroxide (H2 O2 ). After activation of the INK4a-RB pathway, NMR fibroblasts increased monoamine oxidase levels, leading to serotonin oxidization and H2 O2 production, which resulted in increased intracellular oxidative damage and cell death activation. In the NMR lung, induction of cellular senescence caused delayed, progressive cell death mediated by monoamine oxidase activation, thereby preventing senescent cell accumulation, consistent with in vitro results. The present findings indicate that INK4a-RB cell death likely functions as a natural senolytic mechanism in NMRs, providing an evolutionary rationale for senescent cell removal as a strategy to resist aging.


Assuntos
Senescência Celular , Serotonina , Animais , Camundongos , Serotonina/metabolismo , Senescência Celular/fisiologia , Envelhecimento/metabolismo , Morte Celular , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Ratos-Toupeira/metabolismo
4.
Nucleic Acids Res ; 51(15): 7820-7831, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463833

RESUMO

Phase-separated membraneless organelles often contain RNAs that exhibit unusual semi-extractability using the conventional RNA extraction method, and can be efficiently retrieved by needle shearing or heating during RNA extraction. Semi-extractable RNAs are promising resources for understanding RNA-centric phase separation. However, limited assessments have been performed to systematically identify and characterize semi-extractable RNAs. In this study, 1074 semi-extractable RNAs, including ASAP1, DANT2, EXT1, FTX, IGF1R, LIMS1, NEAT1, PHF21A, PVT1, SCMH1, STRG.3024.1, TBL1X, TCF7L2, TVP23C-CDRT4, UBE2E2, ZCCHC7, ZFAND3 and ZSWIM6, which exhibited consistent semi-extractability were identified across five human cell lines. By integrating publicly available datasets, we found that semi-extractable RNAs tend to be distributed in the nuclear compartments but are dissociated from the chromatin. Long and repeat-containing semi-extractable RNAs act as hubs to provide global RNA-RNA interactions. Semi-extractable RNAs were divided into four groups based on their k-mer content. The NEAT1 group preferred to interact with paraspeckle proteins, such as FUS and NONO, implying that RNAs in this group are potential candidates of architectural RNAs that constitute nuclear bodies.


Assuntos
RNA Longo não Codificante , RNA , Humanos , Linhagem Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , RNA/isolamento & purificação , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
5.
Commun Biol ; 6(1): 307, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949224

RESUMO

In mammalian mitochondria, translation of the AUA codon is supported by 5-formylcytidine (f5C) modification in the mitochondrial methionine tRNA anticodon. The 5-formylation is initiated by NSUN3 methylase. Human NSUN3 mutations are associated with mitochondrial diseases. Here we show that Nsun3 is essential for embryonic development in mice with whole-body Nsun3 knockout embryos dying between E10.5 and E12.5. To determine the functions of NSUN3 in adult tissue, we generated heart-specific Nsun3 knockout (Nsun3HKO) mice. Nsun3HKO heart mitochondria were enlarged and contained fragmented cristae. Nsun3HKO resulted in enhanced heart contraction and age-associated mild heart enlargement. In the Nsun3HKO hearts, mitochondrial mRNAs that encode respiratory complex subunits were not down regulated, but the enzymatic activities of the respiratory complexes decreased, especially in older mice. Our study emphasizes that mitochondrial tRNA anticodon modification is essential for mammalian embryonic development and shows that tissue-specific loss of a single mitochondrial tRNA modification can induce tissue aberration that worsens in later adulthood.


Assuntos
Anticódon , RNA de Transferência de Metionina , Humanos , Animais , Camundongos , Adulto , RNA de Transferência de Metionina/genética , Códon , Mitocôndrias/genética , Mamíferos/genética , Metiltransferases/genética
6.
RNA ; 29(2): 170-177, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36384963

RESUMO

The mammalian cell nucleus contains dozens of membrane-less nuclear bodies that play significant roles in various aspects of gene expression. Several nuclear bodies are nucleated by specific architectural noncoding RNAs (arcRNAs) acting as structural scaffolds. We have reported that a minor population of cellular RNAs exhibits an unusual semi-extractable feature upon using the conventional procedure of RNA preparation and that needle shearing or heating of cell lysates remarkably improves extraction of dozens of RNAs. Because semi-extractable RNAs, including known arcRNAs, commonly localize in nuclear bodies, this feature may be a hallmark of arcRNAs. Using the semi-extractability of RNA, we performed genome-wide screening of semi-extractable long noncoding RNAs to identify new candidate arcRNAs for arcRNA under hyperosmotic and heat stress conditions. After screening stress-inducible and semi-extractable RNAs, hundreds of readthrough downstream-of-gene (DoG) transcripts over several hundreds of kilobases, many of which were not detected among RNAs prepared by the conventional extraction procedure, were found to be stress-inducible and semi-extractable. We further characterized some of the abundant DoGs and found that stress-inducible transient extension of the 3'-UTR made DoGs semi-extractable. Furthermore, they were localized in distinct nuclear foci that were sensitive to 1,6-hexanediol. These data suggest that semi-extractable DoGs exhibit arcRNA-like features and our semi-extractable RNA-seq is a powerful tool to extensively monitor DoGs that are induced under specific physiological conditions.


Assuntos
Núcleo Celular , RNA Longo não Codificante , Animais , Sequência de Bases , Núcleo Celular/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Mamíferos/genética
7.
Biomolecules ; 12(9)2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-36139072

RESUMO

SARS-CoV-2 infection alters cellular RNA content. Cellular RNAs are chemically modified and eventually degraded, depositing modified nucleosides into extracellular fluids such as serum and urine. Here we searched for COVID-19-specific changes in modified nucleoside levels contained in serum and urine of 308 COVID-19 patients using liquid chromatography-mass spectrometry (LC-MS). We found that two modified nucleosides, N6-threonylcarbamoyladenosine (t6A) and 2-methylthio-N6-threonylcarbamoyladenosine (ms2t6A), were elevated in serum and urine of COVID-19 patients. Moreover, these levels were associated with symptom severity and decreased upon recovery from COVID-19. In addition, the elevation of similarly modified nucleosides was observed regardless of COVID-19 variants. These findings illuminate specific modified RNA nucleosides in the extracellular fluids as biomarkers for COVID-19 infection and severity.


Assuntos
COVID-19 , Nucleosídeos , Adenosina/análogos & derivados , Biomarcadores , COVID-19/diagnóstico , Humanos , Nucleosídeos/química , RNA , SARS-CoV-2 , Treonina/análogos & derivados
8.
RNA ; 28(7): 1013-1027, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35414588

RESUMO

N6 -isopentenyladenosine (i6A), a modified adenosine monomer, is known to induce cell death upon its addition to the culture medium. However, the molecular fate of extracellularly added i6A has yet to be identified. Here we show that i6A addition to cell culture medium results in i6A incorporation into cellular RNA in several cell lines, including the 5-fluorouracil (5-FU)-resistant human oral squamous cell carcinoma cell line FR2-SAS and its parental 5-FU-sensitive cell line SAS. i6A was predominantly incorporated into 18S and 28S rRNAs, and i6A incorporation into total RNA was mostly suppressed by treating these cell lines with an RNA polymerase I (Pol I) inhibitor. i6A was incorporated into RNA even upon inactivation of TRIT1, the only cellular i6A-modifying enzyme. These results indicate that upon cellular uptake of i6A, it is anabolized to be used for Pol I transcription. Interestingly, at lower i6A concentrations, the cytotoxic effect of i6A was substantially more pronounced in FR2-SAS cells than in SAS cells. Moreover, in FR2-SAS cells, i6A treatment decreased the rate of cellular protein synthesis and increased intracellular protein aggregation, and these effects were more pronounced than in SAS cells. Our work provides insights into the molecular fate of extracellularly applied i6A in the context of intracellular nucleic acid anabolism and suggests investigation of i6A as a candidate for a chemotherapy agent against 5-FU-resistant cancer cells.


Assuntos
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias Bucais , Linhagem Celular Tumoral , Fluoruracila/metabolismo , Fluoruracila/farmacologia , Humanos , Isopenteniladenosina , RNA , RNA Ribossômico/metabolismo
9.
Commun Biol ; 5(1): 287, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354912

RESUMO

Naked mole-rats (NMRs) have a very low spontaneous carcinogenesis rate, which has prompted studies on the responsible mechanisms to provide clues for human cancer prevention. However, it remains unknown whether and how NMR tissues respond to experimental carcinogenesis induction. Here, we show that NMRs exhibit extraordinary resistance against potent chemical carcinogenesis induction through a dampened inflammatory response. Although carcinogenic insults damaged skin cells of both NMRs and mice, NMR skin showed markedly lower immune cell infiltration. NMRs harbour loss-of-function mutations in RIPK3 and MLKL genes, which are essential for necroptosis, a type of necrotic cell death that activates strong inflammation. In mice, disruption of Ripk3 reduced immune cell infiltration and delayed carcinogenesis. Therefore, necroptosis deficiency may serve as a cancer resistance mechanism via attenuating the inflammatory response in NMRs. Our study sheds light on the importance of a dampened inflammatory response as a non-cell-autonomous cancer resistance mechanism in NMRs.


Assuntos
Ratos-Toupeira , Necroptose , Animais , Carcinogênese , Inflamação , Camundongos , Pele
10.
Nucleic Acids Res ; 49(20): 11855-11867, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34642752

RESUMO

Retroviral infection requires reverse transcription, and the reverse transcriptase (RT) uses cellular tRNA as its primer. In humans, the TRMT6-TRMT61A methyltransferase complex incorporates N1-methyladenosine modification at tRNA position 58 (m1A58); however, the role of m1A58 as an RT-stop site during retroviral infection has remained questionable. Here, we constructed TRMT6 mutant cells to determine the roles of m1A in HIV-1 infection. We confirmed that tRNA3Lys m1A58 was required for in vitro plus-strand strong-stop by RT. Accordingly, infectivity of VSV-G pseudotyped HIV-1 decreased when the virus contained m1A58-deficient tRNA3Lys instead of m1A58-modified tRNA3Lys. In TRMT6 mutant cells, the global protein synthesis rate was equivalent to that of wild-type cells. However, unexpectedly, plasmid-derived HIV-1 expression showed that TRMT6 mutant cells decreased accumulation of HIV-1 capsid, integrase, Tat, Gag, and GagPol proteins without reduction of HIV-1 RNAs in cells, and fewer viruses were produced. Moreover, the importance of 5,2'-O-dimethyluridine at U54 of tRNA3Lys as a second RT-stop site was supported by conservation of retroviral genome-tRNALys sequence-complementarity, and TRMT6 was required for efficient 5-methylation of U54. These findings illuminate the fundamental importance of tRNA m1A58 modification in both the early and late steps of HIV-1 replication, as well as in the cellular tRNA modification network.


Assuntos
HIV-1/fisiologia , Processamento Pós-Transcricional do RNA , RNA de Transferência de Lisina/metabolismo , Replicação Viral , Animais , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metilação , Camundongos , Mutação , RNA de Transferência de Lisina/química
11.
RNA Biol ; 18(sup1): 478-495, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34382915

RESUMO

RNA contains a wide variety of posttranscriptional modifications covalently attached to its base or sugar group. These modified nucleosides are liberated from RNA molecules as the consequence of RNA catabolism and released into extracellular space, but the molecular mechanism of extracellular transport and its pathophysiological implications have been unclear. In the present study, we discovered that RNA-derived modified nucleosides are exported to extracellular space through equilibrative nucleoside transporters 1 and 2 (ENT1 and ENT2), with ENT1 showing higher preference for modified nucleosides than ENT2. Pharmacological inhibition or genetic deletion of ENT1 and ENT2 significantly attenuated export of modified nucleosides thereby resulting in their accumulation in cytosol. Using mutagenesis strategy, we identified an amino acid residue in ENT1 that is involved in the discrimination of unmodified and modified nucleosides. In ENTs-deficient cells, the elevated levels of intracellular modified nucleosides were closely associated with an induction of autophagy response as evidenced by increased LC3-II level. Importantly, we performed a screening of modified nucleosides capable of inducing autophagy and found that 1-methylguanosine (m1G) was sufficient to induce LC3-II levels. Pathophysiologically, defective export of modified nucleosides drastically induced Zika virus replication in an autophagy-dependent manner. In addition, we also found that pharmacological inhibition of ENTs by dilazep significantly induced Zika virus replication. Collectively, our findings highlight RNA-derived modified nucleosides as important signaling modulators that activate autophagy response and indicate that defective export of these modified nucleoside can have profound consequences for pathophysiology.


Assuntos
Autofagia , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Transportador Equilibrativo 2 de Nucleosídeo/metabolismo , Nucleosídeos/metabolismo , RNA/metabolismo , Infecção por Zika virus/virologia , Zika virus/fisiologia , Transporte Ativo do Núcleo Celular , Transportador Equilibrativo 1 de Nucleosídeo/genética , Transportador Equilibrativo 2 de Nucleosídeo/genética , Humanos , Nucleosídeos/química , Nucleosídeos/genética , RNA/genética , Células Tumorais Cultivadas , Replicação Viral , Infecção por Zika virus/genética , Infecção por Zika virus/patologia
12.
FEBS J ; 288(24): 7096-7122, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33513290

RESUMO

tRNA molecules are post-transcriptionally modified by tRNA modification enzymes. Although composed of different chemistries, more than 40 types of human tRNA modifications play pivotal roles in protein synthesis by regulating tRNA structure and stability as well as decoding genetic information on mRNA. Many tRNA modifications are conserved among all three kingdoms of life, and aberrations in various human tRNA modification enzymes cause life-threatening diseases. Here, we describe the class of diseases and disorders caused by aberrations in tRNA modifications as 'tRNA modopathies'. Aberrations in over 50 tRNA modification enzymes are associated with tRNA modopathies, which most frequently manifest as dysfunctions of the brain and/or kidney, mitochondrial diseases, and cancer. However, the molecular mechanisms that link aberrant tRNA modifications to human diseases are largely unknown. In this review, we provide a comprehensive compilation of human tRNA modification functions, tRNA modification enzyme genes, and tRNA modopathies, and we summarize the elucidated pathogenic mechanisms underlying several tRNA modopathies. We will also discuss important questions that need to be addressed in order to understand the molecular pathogenesis of tRNA modopathies.


Assuntos
Encefalopatias/metabolismo , Nefropatias/metabolismo , Doenças Mitocondriais/metabolismo , RNA de Transferência/metabolismo , Encefalopatias/patologia , Humanos , Nefropatias/patologia , Doenças Mitocondriais/patologia , Processamento Pós-Transcricional do RNA/genética , RNA de Transferência/genética
13.
Cell Rep ; 31(1): 107464, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32268083

RESUMO

N6-Methyladenosine (m6A) modification is the major chemical modification in mRNA that controls fundamental biological processes, including cell proliferation. Herein, we demonstrate that fat mass and obesity-associated (FTO) demethylates m6A modification of cyclin D1, the key regulator for G1 phase progression and controls cell proliferation in vitro and in vivo. FTO depletion upregulates cyclin D1 m6A modification, which in turn accelerates the degradation of cyclin D1 mRNA, leading to the impairment of G1 progression. m6A modification of cyclin D1 oscillates in a cell-cycle-dependent manner; m6A levels are suppressed during the G1 phase and enhanced during other phases. Low m6A levels during G1 are associated with the nuclear translocation of FTO from the cytosol. Furthermore, nucleocytoplasmic shuttling of FTO is regulated by casein kinase II-mediated phosphorylation of FTO. Our results highlight the role of m6A in regulating cyclin D1 mRNA stability and add another layer of complexity to cell-cycle regulation.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Ciclina D1/metabolismo , RNA Mensageiro/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/fisiologia , Animais , Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Linhagem Celular , Ciclina D1/genética , Quinases Ciclina-Dependentes/metabolismo , Desmetilação , Fase G1/fisiologia , Xenoenxertos , Humanos , Masculino , Camundongos , Fosforilação , Estabilidade de RNA , RNA Mensageiro/genética
14.
Endocr J ; 66(9): 807-816, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31189758

RESUMO

CDK5 regulatory subunit associated protein 1-like 1 (CDKAL1) is a tRNA-modifying enzyme that catalyzes 2-methylthiolation (ms2) and has been implicated in the development of type 2 diabetes (T2D). CDKAL1-mediated ms2 is important for efficient protein translation and regulates insulin biosynthesis in pancreatic cells. Interestingly, an association between T2D and release of growth hormone (GH) has been reported in humans. However, it is unknown whether CDKAL1 is important for hormone production in the pituitary gland. The present study investigated the role of CDKAL1 in GH-producing pituitary adenomas (GHPAs). CDKAL1 activity was suppressed in GHPAs, as evidenced by a decrease in ms2, compared with non-functioning pituitary adenomas (NFPAs), which do not produce specific hormones. Downregulation of Cdkal1 using small interfering and short hairpin RNAs increased the biosynthesis and secretion of GH in rat GH3 cells. Depletion of Cdkal1 increased the cytosolic calcium level via downregulation of DnaJ heat shock protein family (Hsp40) member C10 (Dnajc10), which is an endoplasmic reticulum protein related to calcium homeostasis. This stimulated transcription of GH via upregulation of Pit-1. Moreover, CDKAL1 activity was highly sensitive to proteostatic stress and was upregulated by suppression of this stress. Taken together, these results suggest that dysregulation of CDKAL1 is involved in the pathogenesis of GHPAs, and that modulation of the proteostatic stress response might control CDKAL1 activity and facilitate treatment of GHPAs.


Assuntos
Adenoma/genética , Hormônio do Crescimento/biossíntese , Neoplasias Hipofisárias/genética , tRNA Metiltransferases/fisiologia , Adenoma/metabolismo , Adenoma/patologia , Animais , Células Cultivadas , Estresse do Retículo Endoplasmático/fisiologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hormônio do Crescimento/genética , Adenoma Hipofisário Secretor de Hormônio do Crescimento/genética , Adenoma Hipofisário Secretor de Hormônio do Crescimento/metabolismo , Adenoma Hipofisário Secretor de Hormônio do Crescimento/patologia , Hormônio do Crescimento Humano/biossíntese , Hormônio do Crescimento Humano/genética , Humanos , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , RNA Interferente Pequeno/farmacologia , Ratos , Resposta a Proteínas não Dobradas/fisiologia , tRNA Metiltransferases/genética
15.
Mol Cell ; 70(6): 1038-1053.e7, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29932899

RESUMO

A class of long noncoding RNAs (lncRNAs) has architectural functions in nuclear body construction; however, specific RNA domains dictating their architectural functions remain uninvestigated. Here, we identified the domains of the architectural NEAT1 lncRNA that construct paraspeckles. Systematic deletion of NEAT1 portions using CRISPR/Cas9 in haploid cells revealed modular domains of NEAT1 important for RNA stability, isoform switching, and paraspeckle assembly. The middle domain, containing functionally redundant subdomains, was responsible for paraspeckle assembly. Artificial tethering of the NONO protein to a NEAT1_2 mutant lacking the functional subdomains rescued paraspeckle assembly, and this required the NOPS dimerization domain of NONO. Paraspeckles exhibit phase-separated properties including susceptibility to 1,6-hexanediol treatment. RNA fragments of the NEAT1_2 subdomains preferentially bound NONO/SFPQ, leading to phase-separated aggregates in vitro. Thus, we demonstrate that the enrichment of NONO dimers on the redundant NEAT1_2 subdomains initiates construction of phase-separated paraspeckles, providing mechanistic insights into lncRNA-based nuclear body formation.


Assuntos
RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas , Núcleo Celular/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Domínios Proteicos , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Estabilidade de RNA , Fatores de Transcrição/metabolismo
16.
Mol Cells ; 40(12): 889-896, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-29276943

RESUMO

Nuclear bodies are subnuclear, spheroidal, and membraneless compartments that concentrate specific proteins and/or RNAs. They serve as sites of biogenesis, storage, and sequestration of specific RNAs, proteins, or ribonucleoprotein complexes. Recent studies reveal that a subset of nuclear bodies in various eukaryotic organisms is constructed using architectural long noncoding RNAs (arcRNAs). Here, we describe the unifying mechanistic principles of the construction and function of these bodies, especially focusing on liquid-liquid phase separation induced by architectural molecules that form multiple weakly adhesive interactions. We also discuss three possible advantages of using arcRNAs rather than architectural proteins to build the bodies: position-specificity, rapidity, and economy in sequestering nucleic acid-binding proteins. Moreover, we introduce two recently devised methods to discover novel arcRNA-constructed bodies; one that focuses on the RNase-sensitivity of these bodies, and another that focuses on "semi-extractability" of arcRNAs.


Assuntos
Núcleo Celular/metabolismo , RNA Longo não Codificante/genética , Humanos , RNA Longo não Codificante/metabolismo
17.
EMBO J ; 36(10): 1447-1462, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28404604

RESUMO

NEAT1_2 long noncoding RNA (lncRNA) is the molecular scaffold of paraspeckle nuclear bodies. Here, we report an improved RNA extraction method: extensive needle shearing or heating of cell lysate in RNA extraction reagent improved NEAT1_2 extraction by 20-fold (a property we term "semi-extractability"), whereas using a conventional method NEAT1_2 was trapped in the protein phase. The improved extraction method enabled us to estimate that approximately 50 NEAT1_2 molecules are present in a single paraspeckle. Another architectural lncRNA, IGS16, also exhibited similar semi-extractability. A comparison of RNA-seq data from needle-sheared and control samples revealed the existence of multiple semi-extractable RNAs, many of which were localized in subnuclear granule-like structures. The semi-extractability of NEAT1_2 correlated with its association with paraspeckle proteins and required the prion-like domain of the RNA-binding protein FUS This observation suggests that tenacious RNA-protein and protein-protein interactions, which drive nuclear body formation, are responsible for semi-extractability. Our findings provide a foundation for the discovery of the architectural RNAs that constitute nuclear bodies.


Assuntos
Núcleo Celular/química , RNA Longo não Codificante/análise , RNA Longo não Codificante/isolamento & purificação , Animais , Humanos , Biologia Molecular/métodos , Nucleoproteínas/análise , Nucleoproteínas/isolamento & purificação , Ligação Proteica , Análise de Sequência de RNA
19.
PLoS Biol ; 14(9): e1002557, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27631568

RESUMO

The mitochondrial ribosome, which translates all mitochondrial DNA (mtDNA)-encoded proteins, should be tightly regulated pre- and post-transcriptionally. Recently, we found RNA-DNA differences (RDDs) at human mitochondrial 16S (large) rRNA position 947 that were indicative of post-transcriptional modification. Here, we show that these 16S rRNA RDDs result from a 1-methyladenosine (m1A) modification introduced by TRMT61B, thus being the first vertebrate methyltransferase that modifies both tRNA and rRNAs. m1A947 is conserved in humans and all vertebrates having adenine at the corresponding mtDNA position (90% of vertebrates). However, this mtDNA base is a thymine in 10% of the vertebrates and a guanine in the 23S rRNA of 95% of bacteria, suggesting alternative evolutionary solutions. m1A, uridine, or guanine may stabilize the local structure of mitochondrial and bacterial ribosomes. Experimental assessment of genome-edited Escherichia coli showed that unmodified adenine caused impaired protein synthesis and growth. Our findings revealed a conserved mechanism of rRNA modification that has been selected instead of DNA mutations to enable proper mitochondrial ribosome function.


Assuntos
Processamento Pós-Transcricional do RNA , RNA Ribossômico 16S/metabolismo , tRNA Metiltransferases/fisiologia , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Escherichia coli , Células HeLa , Humanos , Metilação , Mitocôndrias/genética , RNA/genética , RNA/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mitocondrial , RNA Ribossômico 16S/genética
20.
J Cell Biol ; 214(7): 817-30, 2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27646274

RESUMO

Paraspeckles are nuclear bodies built on the long noncoding RNA Neat1, which regulates a variety of physiological processes including cancer progression and corpus luteum formation. To obtain further insight into the molecular basis of the function of paraspeckles, we performed fine structural analyses of these nuclear bodies using structural illumination microscopy. Notably, paraspeckle proteins are found within different layers along the radially arranged bundles of Neat1 transcripts, forming a characteristic core-shell spheroidal structure. In cells lacking the RNA binding protein Fus, paraspeckle spheroids are disassembled into smaller particles containing Neat1, which are diffusely distributed in the nucleoplasm. Sequencing analysis of RNAs purified from paraspeckles revealed that AG-rich transcripts associate with Neat1, which are distributed along the shell of the paraspeckle spheroids. We propose that paraspeckles sequester core components inside the spheroids, whereas the outer surface associates with other components in the nucleoplasm to fulfill their function.


Assuntos
Corpos de Inclusão Intranuclear/metabolismo , Microscopia/métodos , Animais , Sequência de Bases , Feminino , Fibroblastos/metabolismo , Hibridização in Situ Fluorescente , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...