Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 143: 105933, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37257314

RESUMO

Reinforced biphasic scaffolds were fabricated with based materials design of anatomical mimicking and evaluated to identify the certain application for maxillofacial surgery. The scaffolds created the polyvinyl alcohol (PVA) with a percentage of gelatin of 5% and were coated with polycaprolactone (PCL) that a different number of cycles 0, 1, 5, 10, and 15 cycles (PCL0, PCL1, PCL5, PCL10, and PCL15 were used to fabricate biphasic scaffolds via bubbling and freeze-thawing before reinforce with immersion coating techniques. The structure and morphology of the scaffolds were characterized and observed by a scanning electron microscope, a differential scanning calorimeter, and a thermogravimetric analyzer, respectively. The performance of the scaffolds was tested in terms of their swelling behavior, degradation, and mechanical properties. They were cultured with MC3T3E1 osteoblast cells and L929 fibroblast cells. The main biological performance of cell proliferation was analyzed, and protein synthesis, calcium synthesis, and alkaline phosphatase activity of the scaffolds were studied. Their morphology demonstrated fewer pores when coated with PCL. Mechanical strength of the modified scaffolds increased followed by the cycles of coating with PCL. The scaffolds with more cycle of PCL coating lower swelling and degradability than without PCL coating. They had more thermal stability than the scaffold without PCL coating. The scaffolds with PCL coating demonstrated better bio-functionality to activate cell response than without coating. Finally, the result exhibited that PCL10 provide a suitably reinforced biphasic scaffold with high promise for maxillofacial surgery.


Assuntos
Gelatina , Alicerces Teciduais , Alicerces Teciduais/química , Álcool de Polivinil , Materiais Biocompatíveis , Poliésteres/química , Técnicas In Vitro , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA