Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e27326, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524570

RESUMO

Purpose: Carbapenem-resistant Acinetobacter baumannii (CRAB) is an urgent concern to public health. This study focuses on exploring the resistance mechanisms and the in vitro results of using rifampicin in combination with conventional antibiotics for the management of CRAB. Methods: The synergistic and bactericidal effects of rifampicin with conventional antibiotics were evaluated using chequerboard assay and time-kill assay, while the phenotypic and genotypic characteristics of resistant determinants were performed by efflux pump detection and whole genome sequencing on 29 isolates from ICU patients with underlying health diseases. Results: The isolates showed multidrug resistance, with over 60% showing addictive responses to rifampicin-based combinations at FICI ranging from 0.6 to 0.8. The time-kill assay revealed 99 % killing for rifampicin and minocycline combination in one isolate at 1/4 MIC rifampicin plus 1/4 MIC minocycline, while a bacteriostatic effect was observed at 1/2 MIC rifampici plus 1/2 MIC for a second isolate. Combination with tigecycline resulted in a 99% killing in two out of three isolates with a 2.5-3 log reduction in CFU at 1/4 MIC rifampicin plus 1/4 MIC tigecycline. Rifampicin plus colistin exhibited bactericidal activity against three out of four isolates. The combinations of rifampicin with ciprofloxacin, chloramphenicol, and trimethoprim-sulfamethoxazole were ineffective against the isolates. In addition, a 4-fold reduction in rifampicin MIC was observed in 2 out of 14 isolates in the presence of an efflux pump inhibitor. The pan-genome study demonstrated a progressive evolution with an accessory genome estimated to cover 58% of the matrix. Seven of the ten sequenced isolates belong to sequence type 2 (ST2), while one isolate each was assigned to ST164, ST16, and ST25. Furthermore, 11 plasmids, 34 antimicrobial resistance (AMR) genes, and 65 virulence-associated genes were predicted from the whole genome data. The blaOXA-23blaADC-25, blaOXA-66, blaPER-7, aph(6)-Id, armA, and arr-3 were prevalent among the isolates. Sequence alignment of the bacteria genome to the reference strain revealed a deleterious mutation in the rpoB gene of 4 isolates. Conclusion: The study suggests that rifampicin in combination with either minocycline, tigecycline, or colistin might be a treatment option for CRAB clinical isolates. In addition, genotypic analysis of the bacteria isolates may inform the clinician of the suitable drug regimen for the management of specific bacteria variants.

2.
Antibiotics (Basel) ; 13(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38391535

RESUMO

This study investigated the genetic diversity, antimicrobial resistance profiles, and virulence characteristics of Acinetobacter non-baumannii isolates obtained from four hospitals in southern Thailand. Clinical data, genome information, and average nucleotide identity (ANI) were analyzed for eight isolates, revealing diverse genetic profiles and novel sequence types (STs). Minimum spanning tree analysis indicated potential clonal spread of certain STs across different geographic regions. Antimicrobial resistance genes (ARGs) were detected in all isolates, with a high prevalence of genes conferring resistance to carbapenems, highlighting the challenge of antimicrobial resistance in Acinetobacter spp. infections. Mobile genetic elements (MGEs) carrying ARGs were also identified, emphasizing the role of horizontal gene transfer in spreading resistance. Evaluation of virulence-associated genes revealed a diverse range of virulence factors, including those related to biofilm formation and antibiotic resistance. However, no direct correlation was found between virulence-associated genes in Acinetobacter spp. and specific clinical outcomes, such as infection severity or patient mortality. This complexity suggests that factors beyond gene presence may influence disease progression and outcomes. This study emphasizes the importance of continued surveillance and molecular epidemiological studies to combat the spread of multidrug-resistant (MDR) Acinetobacter non-baumannii strains. The findings provide valuable insights into the epidemiology and genetic characteristics of this bacteria in southern Thailand, with implications for infection control and antimicrobial management efforts.

3.
Arch Microbiol ; 206(2): 71, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252137

RESUMO

COVID-19 pandemic has generated high demand for natural rubber gloves (NR) leading to crucial issues of rubber waste and waste management such as burning, dumping, stockpiling, discarding waste in landfills. Hence, rubber biodegradation by microorganisms is an alternative solution to the problem. The biodegradation method is environmentally friendly but normally extremely slow. Numerous microorganisms can degrade NR as a source of carbon and energy. In this study, Rhodococcus pyridinivorans KU1 was isolated from the consortium CK from previous study. The 40% rubber weight loss was detected after incubated for 2 months. The bacterial colonization and cavities on the surface of rubber were identified using a scanning electron microscope (SEM). The result demonstrated the critical degradation of the rubber surface, indicating that bacteria can degrade rubber and use it as their sole carbon source. The result of whole-genome sequencing (WGS) revealed a gene that is 99.9% identical to lcp which is responsible for poly (cis-1,4-isoprene) degradation. The results from Meta16S rRNA sequencing showed that the microbial communities were slightly shifted during the 2-month degradation, depending on the presence of monomers or oligomers appeared during the degradation process. The majority of species were soil bacteria such as phylum Proteobacteria, Actinobacteria, and Firmicutes. Members of Pseudoxanthomonas seemed to be the dominant degraders throughout the degradation.


Assuntos
Rhodococcus , Borracha , Humanos , Pandemias , Firmicutes , Carbono
4.
Clin Respir J ; 18(1): e13732, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38286744

RESUMO

INTRODUCTION: Biofilm formation is an important virulence factor of Acinetobacter baumannii. Here, we examined the biofilm formation of archived A. baumannii causing ventilator-associated pneumonia (VAP). METHODS: Eighteen and twenty isolates of A. baumannii causing bacteremic pneumonia and non-bacteremic pneumonia were included, respectively. Antimicrobial susceptibility testing was performed by broth microdilution method, while biofilm formation was evaluated by microtiter dish biofilm formation assay. RESULTS: All 38 isolates were still susceptible to colistin and tigecycline, whereas almost all isolates were non-susceptible (intermediate to resistant) to several antimicrobial agents, especially ceftriaxone and cefotaxime. Approximately, 44% of bacteremic isolates and 50% of non-bacteremic isolates were classified as carbapenem-resistant A. baumannii (CRAB). Biofilm formation was detected in 42% of the studied isolates. Bacteremia among the patients infected with biofilm-producing isolates was significantly higher than in those infected with non-biofilm-producing isolates. The antimicrobial susceptibilities of A. baumannii with biofilm formation were lower than those without biofilm formation, but the differences did not have statistical significance. The patients infected with non-biofilm-producing isolates had good clinical and non-clinical outcomes than those infected with biofilm-producing isolates. The survival rate of patients diagnosed with VAP due to biofilm-producing A. baumannii was lower than in those patients diagnosed with VAP due to non-biofilm-producing isolates. CONCLUSION: Biofilm formation of A. baumannii causing VAP was associated with antimicrobial resistance and bacteremia as well as unfavorable clinical outcomes.


Assuntos
Acinetobacter baumannii , Bacteriemia , Pneumonia Associada à Ventilação Mecânica , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Bacteriemia/tratamento farmacológico , Biofilmes
5.
Microbiol Spectr ; 11(6): e0119923, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37905823

RESUMO

IMPORTANCE: This study provides insights into the mechanisms of polymyxin resistance in K. pneumoniae clinical isolates and demonstrates potential strategies of polymyxin and vancomycin combinations for combating this resistance. We also identified possible mechanisms that might be associated with the treatment of these combinations against carbapenem- and polymyxin-resistant K. pneumoniae clinical isolates. The findings have significant implications for the development of alternative therapies and the effective management of infections caused by these pathogens.


Assuntos
Infecções por Klebsiella , Polimixinas , Humanos , Polimixinas/farmacologia , Polimixinas/uso terapêutico , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Vancomicina/farmacologia , Vancomicina/uso terapêutico , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Infecções por Klebsiella/tratamento farmacológico
6.
Microorganisms ; 11(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37512941

RESUMO

Whole-genome sequencing (WGS) of bacterial pathogens is widely conducted in microbiological, medical, and clinical research to explore genetic insights that could impact clinical treatment and molecular epidemiology. However, analyzing WGS data of bacteria can pose challenges for microbiologists, clinicians, and researchers, as it requires the application of several bioinformatics pipelines to extract genetic information from raw data. In this paper, we present BacSeq, an automated bioinformatic pipeline for the analysis of next-generation sequencing data of bacterial genomes. BacSeq enables the assembly, annotation, and identification of crucial genes responsible for multidrug resistance, virulence factors, and plasmids. Additionally, the pipeline integrates comparative analysis among isolates, offering phylogenetic tree analysis and identification of single-nucleotide polymorphisms (SNPs). To facilitate easy analysis in a single step and support the processing of multiple isolates, BacSeq provides a graphical user interface (GUI) based on the JAVA platform. It is designed to cater to users without extensive bioinformatics skills.

7.
Microbiol Resour Announc ; 12(7): e0045523, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37318327

RESUMO

Clostridioides difficile is a Gram-positive, obligate anaerobic, toxin-producing bacillus that is linked to antibiotic-associated diarrhea. Here, we report the whole-genome sequence of a C. difficile strain isolated from stool from a patient, using next-generation sequencing (MGISEG-2000). De novo assembly revealed a genome length of 4,208,266 bp. Multilocus sequence typing (MLST) results showed that the isolate belonged to sequence type 23 (ST23).

8.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37111234

RESUMO

Biofilm-mediated infections are critical to public health and a leading cause of resistance among pathogens, amounting to a prolonged hospital stay and increased mortality rate in the intensive care unit. In this study, the antibacterial and antibiofilm activities of rifampicin or carbapenem monotherapies were compared with rifampicin and carbapenem combination therapies against rifampicin-resistant and carbapenem-resistant Acinetobacter baumannii isolates. Among 29 CRAB isolates, 24/29 (83%) were resistant to rifampicin, with MIC values between 2-256 µg/mL. Checkerboard assays disclosed that combination therapies at FICIs between 1/8 and 1/4 improved the activity of carbapenems at subinhibitory concentrations. Time-kill kinetics indicated a 2- to 4-log reduction at 1/2 MIC rifampicin + 1/4 MIC carbapenem and 1/4 MIC rifampicin + 1/4 MIC carbapenem against the isolates, with the MIC values ranging from 2-8 µg/mL. The MTT assay revealed a dose-dependent decrease of the cell viability of established bacterial biofilm at 4 MIC rifampicin + 2 MIC carbapenems, with a percentage reduction of 44-75%, compared with monotherapies at 16 MIC. Scanning electron microscopy further confirmed bacterial cell membrane disruption, suggesting a synergism between carbapenem and rifampicin against a representative isolate. The findings demonstrated that the combination of rifampicin with carbapenems could improve antibacterial activities and eradicate established Acinetobacter baumannii biofilm.

9.
Antibiotics (Basel) ; 12(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36671367

RESUMO

Pseudomonas aeruginosa is an important pathogen as it can cause hospital-acquired infections. Additionally, it can also colonize in patients and in other various environments. Hence, this study aimed to investigate the antimicrobial susceptibility, and to study the molecular features, of colonizing isolates of P. aeruginosa from Songklanagarind Hospital, Thailand. Genomic DNA extraction, whole-genome sequencing (WGS), and bioinformatics analysis were performed in all studied isolates. The findings demonstrated that the majority of isolates were non-susceptible to colistin and carbapenem. For in silico study, multilocus sequence typing (MLST) revealed one novel sequence type (ST) 3910 and multiple defined STs. The isolates carried several antimicrobial resistance genes (blaOXA-50, aph(3')-IIb, etc.) and virulence-associated genes (fleN, waaA, etc.). CRISPR-Cas sequences with different spacers and integrated bacteriophage sequences were also identified in these isolates. Very high SNPs were found in the alignments of the novel ST-3910 isolate with other isolates. A comparative genomic analysis exhibited phylogenetic clustering of our colonizing isolates with clinical isolates from many countries. Interestingly, ST-3981, ST-3982, ST-3983, ST-3984, ST-3985, ST-3986, ST-3986, ST-3986, ST-3987, and ST-3988, the new STs from published genomes, were assigned in this study. In conclusion, this WGS data might be useful for tracking the spread of P. aeruginosa colonizing isolates.

10.
Comput Struct Biotechnol J ; 20: 545-558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36284706

RESUMO

The worldwide spread of carbapenem-resistant Acinetobacter baumannii (CRAB) has become a healthcare challenge for some decades. To understand its molecular epidemiology in Southern Thailand, we conducted whole-genome sequencing (WGS) of 221 CRAB clinical isolates. A comprehensive bioinformatics analysis was performed using several tools to assemble, annotate, and identify sequence types (STs), antimicrobial resistance (AMR) genes, mobile genetic elements (MGEs), and virulence genes. ST2 was the most prevalent ST in the CRAB isolates. For the detection of AMR genes, almost all CRAB isolates carried the bla OXA-23 gene, while certain isolates harbored the bla NDM-1 or bla IMP-14 genes. Also, various AMR genes were observed in these CRAB isolates, particularly aminoglycoside resistance genes (e.g., armA, aph(6)-Id, and aph(3″)-Ib), fosfomycin resistance gene (abaF), and tetracycline resistance genes (tet(B) and tet(39)). For plasmid replicon typing, RepAci1 and RepAci7 were the predominant replicons found in the CRAB isolates. Many genes encoding for virulence factors such as the ompA, adeF, pgaA, lpxA, and bfmR genes were also identified in all CRAB isolates. In conclusion, most CRAB isolates contained a mixture of AMR genes, MGEs, and virulence genes. This study provides significant information about the genetic determinants of CRAB clinical isolates that could assist the development of strategies for improved control and treatment of these infections.

11.
Microbiol Res ; 263: 127136, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35870342

RESUMO

The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates is a serious threat to global health. Here, we elucidate the genetic features of blaNDM-carrying CRKP clinical isolates from a university hospital in Thailand. The entire genomes of 19 CRKP isolates were extracted and then sequenced using the MGISEQ200 platform. Using various bioinformatics tools, we analyzed the antimicrobial resistance (AMR), virulence factors, gene transfer, bacterial defense mechanisms, and genomic diversity of the CRKP isolates. The sequence type (ST) 16 was found in most of the isolates, along with carriages of the blaNDM-1, blaOXA-232, and blaCTX-M-15 genes. The IncFIB(pQil), Col440II, and ColKP3 plasmids were identified with high frequency. The CRKP isolates harbored genes encoding for virulence factors such as adherence, biofilm formation, immune evasion, and iron uptake. The CRISPR-Cas region in the CRKP9 isolate consisted of 28 distinct spacer sequences. The genomes of the CRKP isolates presented restriction-modification (R-M) sites (M.Kpn34618Dcm and M.Kpn928I) and integrated bacteriophage genomes (Klebsiella phage ST16-OXA48phi5.4 and Enterobacteria phage mEp390). Bottromycin and sactipeptides were also identified. The isolates could be separated into three clades according to STs and pairwise single nucleotide polymorphism (SNP) distance. Pairwise average nucleotide identity (ANI) values revealed intra-species. These findings support the importance of whole-genome sequencing (WGS) to the rapid and accurate genomic analysis of clinical isolates of CRKP.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Genômica , Hospitais , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Plasmídeos/genética , Tailândia , Fatores de Virulência , beta-Lactamases/genética
12.
Front Microbiol ; 13: 826683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663880

RESUMO

Lactic acid bacteria (LAB) in the genus Weissella spp. contain traits in their genome that confer versatility. In particular, Weissella cibaria encodes several beneficial genes that are useful in biotechnological applications. The complete genome of W. cibaria NH9449 was sequenced and an in silico comparative analysis was performed to gain insight into the genomic diversity among members of the genus Weissella. A total of 219 Weissella genomes were used in a bioinformatics analysis of pan-genomes, phylogenetics, self-defense mechanisms, virulence factors, antimicrobial resistance, and carbohydrate-active enzymes. These investigations showed that the strain NH9449 encodes several restriction-modification-related genes and a CRISPR-Cas region in its genome. The identification of carbohydrate-active enzyme-encoding genes indicated that this strain could be beneficial in biotechnological applications. The comparative genomic analysis reveals the very high genomic diversity in this genus, and some marked differences in genetic variation and genes among Weissella species. The calculated average amino acid identity (AAI) and phylogenetic analysis of core and accessory genes shows the possible existence of three new species in this genus. These new genomic insights into Weissella species and their biological functions could be useful in the food industry and other applications.

13.
Infect Drug Resist ; 15: 1777-1791, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35437346

RESUMO

Purpose: The spread of New Delhi metallo-ß-lactamase (NDM) encoded by the bla NDM gene has been a global health crisis for many years. Most of bla NDM-harboring bacteria commonly carry various antimicrobial resistance (AMR) genes on their chromosomes or plasmids, leading to limited treatment options. Thus, we aimed to evaluate the synergistic effects of fosfomycin in combination with other antimicrobial agents against bla NDM-harboring carbapenem-resistant Escherichia coli (CREC) and to characterize the whole-genome and plasmid sequences of these pathogens. Methods: Thirty-eight CREC isolates were collected from patients in the Medicine Ward, Songklanagarind Hospital, Thailand. The activity of fosfomycin in combination with other antimicrobial agents against CREC isolates harboring bla NDM on the plasmid was evaluated using the checkerboard method. In this method, the serial dilutions of two antibiotics were mixed with the cultured CREC, the mixtures were incubated, and FICI was calculated to interpret the synergistic activity of the combination. The whole-genome and particular plasmids of these pathogens were sequenced using next-generation sequencing. Sequence analysis, especially on antimicrobial resistance (AMR) genes, mobile-genetic elements (MGEs), and virulence genes was performed using many bioinformatics tools. Results: Of the E. coli 38 isolates, only 3 isolates contained the bla NDM-1 gene, which is located on the IncN2 plasmid. The combinations of fosfomycin with aminoglycosides, colistin, tigecycline, sitafloxacin, and ciprofloxacin were synergies against bla NDM-1-harboring CREC isolates. Genomic analysis revealed that these isolates harbored many ß-lactam resistance genes and other AMR genes that may confer resistance to aminoglycoside, fluoroquinolone, rifampicin, trimethoprim, sulfonamide, tetracycline, and macrolide. Also, various MGEs, especially the bla NDM-1-bearing IncN2 plasmid, were present in these isolates. Conclusion: Our study demonstrated some synergistic effects of antimicrobial combination against CREC isolates harboring bla NDM-1 on the IncN2 plasmid. Also, our data on the whole-genome and plasmid sequences might be beneficial in the control of the spread of bla NDM-1-harboring CREC isolates. The linkages between bla NDM-1-carrying plasmid, patient information, and time of collection will be elucidated to track the horizontal gene transfer in the future.

14.
Microbiol Res ; 251: 126833, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34352473

RESUMO

Gamma-aminobutyric acid (GABA) is an amino that plays a major role as a neurotransmitter. It iscommonly produced by lactic acid bacteria (LAB) naturally found in fermented food and fruit. Lactiplantibacillus plantarum DW12 is a high potential GABA-producing strain isolated from a fermented beverage. In this study, to highlight its ability to produce GABA, we sequenced the genome of L. plantarum DW12 and then performed comprehensive bioinformatics and meta-analysis to compare the genomic data of previously published genomes. Also, the evolutionary analysis among L. plantarum species was demonstrated using pan-genome analysis against 576 genomes from the database. As a result, the DW12 genome comprises one circular chromosome of 3,217,574 bp. It contains several genes that encode for the production of antimicrobial compounds including plantaricin A, E, F, J, K, and N. The glutamic acid decarboxylase (GAD) operon was found in the DW12 genome, suggests a high potential of producing GABA in this strain. Therefore, L. plantarum DW12 could be a good candidate as a starter culture in the beverage and food industries due to its safety aspects and ability to produce GABA.


Assuntos
Genoma Bacteriano , Lactobacillaceae , Ácido gama-Aminobutírico , Simulação por Computador , Genoma Bacteriano/genética , Genômica , Lactobacillaceae/genética , Ácido gama-Aminobutírico/metabolismo
15.
J Infect Chemother ; 27(3): 507-514, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33221181

RESUMO

INTRODUCTION: Carbapenem-resistant Klebsiella pneumoniae (CRKP) causes high morbidity and mortality worldwide. The purpose of the study was to assess the synergistic activity of fosfomycin in combination with other antimicrobial agents against CRKP isolated from patients in Songklanagarind Hospital, Thailand. METHODS: A total of 35 K. pneumoniae isolates were obtained from patients in Songklanagarind Hospital. The MICs of imipenem and meropenem were determined in all isolates by broth microdilution. In all CRKP isolates, the presence of carbapenemase and extended-spectrum ß-lactamase (ESBL) genes was investigated by PCR, while the production of these enzymes was determined by combined disk test. In the carbapenemase-genes-negative CRKP isolates, the porin loss and efflux pump were characterized by SDS-PAGE and broth microdilution, respectively. Finally, the synergistic effects of fosfomycin and other antimicrobial agents were evaluated by checkerboard analysis. RESULTS: Twenty-one of 35 K. pneumoniae isolates were classified as CRKP. Most of CRKP isolates carried blaNDM-1 (n = 18), blaSHV (n = 21), blaCTX-M (n = 21), and blaTEM (n = 16). In fosfomycin-based combination, the result showed that the highest synergistic activity in this study was observed in the combination of fosfomycin and gentamicin (61.9%). CONCLUSION: These findings suggested that the fosfomycin and gentamicin combination might be useful as a possible treatment option for CRKP infection.


Assuntos
Fosfomicina , Infecções por Klebsiella , Antibacterianos/farmacologia , Fosfomicina/farmacologia , Hospitais , Humanos , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Tailândia , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...