Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Behav ; 251: 113803, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35398333

RESUMO

Sleep is essential for optimal cognitive functioning. Although we lack a complete understanding of the role of sleep in memory consolidation, we know that various factors that disturb sleep or sleep quality have consequences for cognitive performance. Such factors can be unintended components of behavioral experiments on rodents and other experimental animals that generate differing results from different labs. These experimental variables include habituation to handling, intended or unintended sleep deprivation, task complexity, time of testing, and environmental features. We have examined how these variables impact recognition memory in C57BL/6 mice. Handled mice outperformed their non-handled counterparts across different combinations of delay phase duration and lighting conditions. Results also suggest that simple task recall is more resistant to diurnal variation and the impairing effects of sleep deprivation than is complex task recall. This study underscores the role of protocol and environmental factors in recognition memory and in conflicting results from different laboratories.


Assuntos
Reconhecimento Psicológico , Privação do Sono , Animais , Rememoração Mental , Camundongos , Camundongos Endogâmicos C57BL , Sono , Privação do Sono/psicologia
2.
Elife ; 112022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35311644

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease observed with aging that represents the most common form of dementia. To date, therapies targeting end-stage disease plaques, tangles, or inflammation have limited efficacy. Therefore, we set out to identify a potential earlier targetable phenotype. Utilizing a mouse model of AD and human fetal cells harboring mutant amyloid precursor protein, we show cell intrinsic neural precursor cell (NPC) dysfunction precedes widespread inflammation and amyloid plaque pathology, making it the earliest defect in the evolution of the disease. We demonstrate that reversing impaired NPC self-renewal via genetic reduction of USP16, a histone modifier and critical physiological antagonist of the Polycomb Repressor Complex 1, can prevent downstream cognitive defects and decrease astrogliosis in vivo. Reduction of USP16 led to decreased expression of senescence gene Cdkn2a and mitigated aberrant regulation of the Bone Morphogenetic Signaling (BMP) pathway, a previously unknown function of USP16. Thus, we reveal USP16 as a novel target in an AD model that can both ameliorate the NPC defect and rescue memory and learning through its regulation of both Cdkn2a and BMP signaling.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Senescência Celular , Modelos Animais de Doenças , Inflamação , Camundongos , Camundongos Transgênicos , Placa Amiloide , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
3.
Nat Immunol ; 23(2): 229-236, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34949832

RESUMO

Aging is characterized by an increased vulnerability to infection and the development of inflammatory diseases, such as atherosclerosis, frailty, cancer and neurodegeneration. Here, we find that aging is associated with the loss of diurnally rhythmic innate immune responses, including monocyte trafficking from bone marrow to blood, response to lipopolysaccharide and phagocytosis. This decline in homeostatic immune responses was associated with a striking disappearance of circadian gene transcription in aged compared to young tissue macrophages. Chromatin accessibility was significantly greater in young macrophages than in aged macrophages; however, this difference did not explain the loss of rhythmic gene transcription in aged macrophages. Rather, diurnal expression of Kruppel-like factor 4 (Klf4), a transcription factor (TF) well established in regulating cell differentiation and reprogramming, was selectively diminished in aged macrophages. Ablation of Klf4 expression abolished diurnal rhythms in phagocytic activity, recapitulating the effect of aging on macrophage phagocytosis. Examination of individuals harboring genetic variants of KLF4 revealed an association with age-dependent susceptibility to death caused by bacterial infection. Our results indicate that loss of rhythmic Klf4 expression in aged macrophages is associated with disruption of circadian innate immune homeostasis, a mechanism that may underlie age-associated loss of protective immune responses.


Assuntos
Relógios Circadianos/genética , Macrófagos/fisiologia , Envelhecimento , Animais , Aterosclerose/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica/genética , Imunidade Inata/genética , Inflamação/genética , Fator 4 Semelhante a Kruppel/genética , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/fisiologia , Fagocitose/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-32195448

RESUMO

The Ts65Dn mouse is a well-studied model of trisomy 21, Down syndrome. This mouse strain has severe learning disability as measured by several rodent learning tests that depend on hippocampal spatial memory function. Hippocampal long-term potentiation (LTP) is deficient in these mice. Short-term daily treatment with low-dose GABA receptor antagonists rescue spatial learning and LTP in Ts65Dn mice leading to the hypothesis that the learning disability is due to GABAergic over-inhibition of hippocampal circuits. The fact that the GABA receptor antagonists were only effective if delivered during the daily light phase suggested that the source of the excess GABA was controlled directly or indirectly by the circadian system. The central circadian pacemaker of mammals is the suprachiasmatic nucleus (SCN), which is largely a GABAergic nucleus. In this study we investigated whether elimination of the SCN in Ts65Dn mice would restore their ability to form recognition memories as tested by the novel object recognition (NOR) task. Full, but not partial lesions of the SCN of Ts65Dn mice normalized their ability to perform on the NOR test. These results suggest that the circadian system modulates neuroplasticity over the time frame involved in the process of consolidation of recognition memories.

5.
Neurobiol Learn Mem ; 140: 11-16, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28215510

RESUMO

Down syndrome (DS) is a common genetic cause of intellectual disability yet no pro-cognitive drug therapies are approved for human use. Mechanistic studies in a mouse model of DS (Ts65Dn mice) demonstrate that impaired cognitive function is due to excessive neuronal inhibitory tone. These deficits are normalized by chronic, short-term low doses of GABAA receptor (GABAAR) antagonists in adult animals, but none of the compounds investigated are approved for human use. We explored the therapeutic potential of flumazenil (FLUM), a GABAAR antagonist working at the benzodiazepine binding site that has FDA approval. Long-term memory was assessed by the Novel Object Recognition (NOR) testing in Ts65Dn mice after acute or short-term chronic treatment with FLUM. Short-term, low, chronic dose regimens of FLUM elicit long-lasting (>1week) normalization of cognitive function in both young and aged mice. FLUM at low dosages produces long lasting cognitive improvements and has the potential of fulfilling an unmet therapeutic need in DS.


Assuntos
Síndrome de Down/tratamento farmacológico , Flumazenil/uso terapêutico , Moduladores GABAérgicos/uso terapêutico , Transtornos da Memória/tratamento farmacológico , Memória de Longo Prazo/efeitos dos fármacos , Animais , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Síndrome de Down/genética , Flumazenil/farmacologia , Moduladores GABAérgicos/farmacologia , Masculino , Camundongos
6.
Brain ; 139(Pt 7): 2063-81, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27190010

RESUMO

Identifying preventive targets for Alzheimer's disease is a central challenge of modern medicine. Non-steroidal anti-inflammatory drugs, which inhibit the cyclooxygenase enzymes COX-1 and COX-2, reduce the risk of developing Alzheimer's disease in normal ageing populations. This preventive effect coincides with an extended preclinical phase that spans years to decades before onset of cognitive decline. In the brain, COX-2 is induced in neurons in response to excitatory synaptic activity and in glial cells in response to inflammation. To identify mechanisms underlying prevention of cognitive decline by anti-inflammatory drugs, we first identified an early object memory deficit in APPSwe-PS1ΔE9 mice that preceded previously identified spatial memory deficits in this model. We modelled prevention of this memory deficit with ibuprofen, and found that ibuprofen prevented memory impairment without producing any measurable changes in amyloid-ß accumulation or glial inflammation. Instead, ibuprofen modulated hippocampal gene expression in pathways involved in neuronal plasticity and increased levels of norepinephrine and dopamine. The gene most highly downregulated by ibuprofen was neuronal tryptophan 2,3-dioxygenase (Tdo2), which encodes an enzyme that metabolizes tryptophan to kynurenine. TDO2 expression was increased by neuronal COX-2 activity, and overexpression of hippocampal TDO2 produced behavioural deficits. Moreover, pharmacological TDO2 inhibition prevented behavioural deficits in APPSwe-PS1ΔE9 mice. Taken together, these data demonstrate broad effects of cyclooxygenase inhibition on multiple neuronal pathways that counteract the neurotoxic effects of early accumulating amyloid-ß oligomers.


Assuntos
Doença de Alzheimer/prevenção & controle , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Transtornos da Memória/prevenção & controle , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase , Modelos Animais de Doenças , Regulação para Baixo , Eletroencefalografia , Ibuprofeno , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Reconhecimento Psicológico/efeitos dos fármacos , Triptofano Oxigenase/efeitos dos fármacos
7.
Neurobiol Learn Mem ; 116: 162-71, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25463650

RESUMO

Down syndrome (DS) has an incidence of about 1/700 births, and is therefore the most common cause of cognitive and behavioral impairments in children. Recent studies on mouse models of DS indicate that a number of pharmacotherapies could be beneficial for restoring cognitive abilities in individuals with DS. Attention deficits that are present in DS account in part for learning and memory deficiencies yet have been scarcely studied in corresponding models. Investigations of this relevant group of behaviors is more difficult in mouse models because of the difficulty in homologizing mouse and human behaviors and because standard laboratory environments do not always elicit behaviors of interest. Here we characterize nest building as a goal-directed behavior that is seriously impaired in young Ts65Dn mice, a genetic model of DS. We believe this impairment may reflect in part attention deficits, and we investigate the physiological, genetic, and pharmacological factors influencing its expression. Nesting behavior in young Ts65Dn mice was severely impaired when the animals were placed in a novel environment. But this context-dependent impairment was transient and reversible. The genetic determinants of this deficiency are restricted to a ∼100 gene segment on the murine chromosome 16. Nest building behavior is a highly integrated phenotypic trait that relies in part on limbic circuitry and on the frontal cortex in relation to cognitive and attention processes. We show that both serotonin content and 5HT2a receptors are increased in the frontal cortex of Ts65Dn mice and that pharmacological blockage of 5HT2a receptors in Ts65Dn mice rescues their context dependent nest building impairment. We propose that the nest-building trait could represent a marker of attention related deficits in DS models and could be of value in designing pharmacotherapies for this specific aspect of DS. 5HT2a modulation may improve goal-directed behavior in DS.


Assuntos
Transtornos Cognitivos/fisiopatologia , Síndrome de Down/fisiopatologia , Comportamento de Nidação/fisiologia , Receptor 5-HT2A de Serotonina/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Animais , Transtornos Cognitivos/genética , Transtornos Cognitivos/metabolismo , Modelos Animais de Doenças , Síndrome de Down/genética , Síndrome de Down/metabolismo , Expressão Gênica , Camundongos , Comportamento de Nidação/efeitos dos fármacos , Fenótipo , Receptor 5-HT2A de Serotonina/genética , Risperidona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA