Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 33(50)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36103775

RESUMO

Embeddingp-type gallium nitride (p-GaN) with controlled Mg out-diffusion in adjacent epitaxial layers is a key for designing various multi-junction structures with high precision and enabling more reliable bandgap engineering of III-nitride-based optoelectronics and electronics. Here, we report, for the first time, experimental evidence of how nanoporous GaN (NP GaN) can be introduced as a compensation layer for the Mg out-diffusion fromp-GaN. NP GaN onp-GaN provides anex-situformed interface with oxygen and carbon impurities, compensating for Mg out-diffusion fromp-GaN. To corroborate our findings, we used two-dimensional electron gas (2DEG) formed at the interface of AlGaN/GaN as the indicator to study the impact of the Mg out-diffusion from underlying layers. Electron concentration evaluated from the capacitance-voltage measurement shows that 9 × 1012cm-2of carriers accumulate in the AlGaN/GaN 2DEG structure grown on NP GaN, which is the almost same number of carriers as that grown with nop-GaN. In contrast, 2DEG onp-GaN without NP GaN presents 9 × 109cm-2of the electron concentration, implying the 2DEG structure is depleted by Mg out-diffusion. The results address the efficacy of NP GaN and its' role in successfully embeddingp-GaN in multi-junction structures for various state-of-the-art III-nitride-based devices.

2.
Opt Express ; 26(10): 12801-12812, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801315

RESUMO

This paper reports design, fabrication, and experimental demonstration of a silicon nitride photonic integrated circuit (PIC). The PIC is capable of conducting one-dimensional interferometric imaging with twelve baselines near λ = 1100-1600 nm. The PIC consists of twelve waveguide pairs, each leading to a multi-mode interferometer (MMI) that forms broadband interference fringes or each corresponding pair of the waveguides. Then an 18 channel arrayed waveguide grating (AWG) separates the combined signal into 18 signals of different wavelengths. A total of 103 sets of fringes are collected by the detector array at the output of the PIC. We keep the optical path difference (OPD) of each interferometer baseline to within 1 µm to maximize the visibility of the interference measurement. We also constructed a testbed to utilize the PIC for two-dimension complex visibility measurement with various targets. The experiment shows reconstructed images in good agreement with theoretical predictions.

3.
Nanoscale ; 8(19): 10138-44, 2016 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-27121775

RESUMO

TiO2 nanotube (NT) arrays were fabricated on the surface of n-GaN through a liquid-phase conversion process using ZnO nanorods (NRs) as a template for high-efficiency InGaN/GaN multiple quantum well (MQW) vertical light-emitting diodes (VLEDs). The optical output power of the VLEDs with TiO2 NTs was remarkably enhanced by 23% and 189% at an injection current of 350 mA compared to those of VLEDs with ZnO NRs and planar VLEDs, respectively. The large enhancement in optical output is attributed to a synergistic effect of efficient light injection from the n-GaN layer of the VLED to TiO2 NTs because of the well-matched refractive indices and superior light extraction into air at the end of the TiO2 NTs. Light propagation along various configurations of TiO2 NTs on the VLEDs was investigated using finite-difference time domain simulations and the results indicated that the wall thickness of the TiO2 NTs should be maintained close to 20 nm for superior light extraction from the VLEDs.

4.
Opt Express ; 24(5): 4391-4398, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29092267

RESUMO

We report the growth of InGaN/GaN multiple quantum wells blue light-emitting diodes (LEDs) on a silicon (111) substrate with an embedded nanoporous (NP) GaN layer. The NP GaN layer is fabricated by electrochemical etching of n-type GaN on the silicon substrate. The crystalline quality of crack-free GaN grown on the NP GaN layer is remarkably improved and the residual tensile stress is also decreased. The optical output power is increased by 120% at an injection current of 20 mA compared with that of conventional LEDs without a NP GaN layer. The large enhancement of optical output power is attributed to the reduction of threading dislocation, effective scattering of light in the LED, and the suppression of light propagation into the silicon substrate by the NP GaN layer.

5.
ACS Appl Mater Interfaces ; 6(22): 19482-7, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25365398

RESUMO

We report on the vertically stacked color tunable light-emitting diodes (LEDs) fabricated using wafer bonding with an indium tin oxide (ITO) layer and transfer printing by the laser lift-off process. Employing optically transparent and electrically conductive ITO as an adhesion layer enables to bond the GaN-based blue and AlGaInP-based yellow LEDs. We find out that the interdiffusion of In, O, and Ga at the interface between ITO and GaP allows the strong bonding of the heterogeneous optoelectronic materials and the integration of two different color LEDs on a single substrate. The efficacy of this method is demonstrated by showing the successful control of color coordinate from the vertically stacked LEDs by modulating the individual intensity of blue and yellow emissions.

6.
ACS Appl Mater Interfaces ; 6(9): 6170-6, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24731166

RESUMO

We report the electrical and optical properties of ZnO/ZnS core/shell nanowire (NW) devices. The spatial separation of charge carriers due to their type II band structure together with passivation effect on ZnO/ZnS core/shell NWs not only enhanced their charge carrier transport characteristics by confining the electrons and reducing surface states in the ZnO channel but also increased the photocurrent under ultraviolet (UV) illumination by reducing the recombination probability of the photogenerated charge carriers. Here the efficacy of the type-II band structure and the passivation effect are demonstrated by showing the enhanced subthreshold swing (150 mV/decade) and mobility (17.2 cm2/(Vs)) of the electrical properties, as well as the high responsivity (4.4×10(6) A/W) in the optical properties of the ZnO/ZnS core/shell NWs, compared with the subthreshold swing (464 mV/decade), mobility (8.9 cm2/(Vs)) and responsivity (2.5×10(6) A/W) of ZnO NWs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...