Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34947289

RESUMO

Nine percent nickel steel has excellent properties in a cryogenic environment, so it has recently been used as a tank material for most LNG fuel-powered ships. However, 9% nickel steel causes arc deflection due to its tendency of magnetization during manual FCAW welding and the currently used filler metal is 10-25 times more expensive as a base metal compared to other materials, depending on manufacturers. Furthermore, the properties of its filler metal cause limitation in the welding position. To overcome these disadvantages, in this study, the tendency of penetration shape was analyzed through a fiber laser Bead on Plate (BOP) welding for 9% nickel steel with a thickness of 6 mm and a range of welding conditions for 1-pass laser butt welding of 6 mm thick 9% nickel steel with I-Groove were derived. Through this study, basic data capable of deriving optimal conditions for laser butt welding of 9% nickel steel with a thickness of 6 mm were obtained.

2.
Materials (Basel) ; 14(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34832393

RESUMO

As the environmental pollution issue has recently become significant, environmental regulations in Europe and the United States are being strengthened. Thus, there is a demand for the quality improvement of emission after-treatment systems to satisfy the strengthened environmental regulations. Reducing the amount of welding heat distortion by optimization of the welding order of each part could be a solution for quality improvement since the emission after-treatment system consists of many parts and each assembly is produced by welding individual ones. In this research, a method to derive a welding sequence that effectively minimizes welding deformation was proposed. A two-stage simulation was performed to obtain the optimal welding sequence. In the first stage, the welding sequence was derived by analyzing the number of welding groups in each assembly of a structure. The derived welding sequence was verified by performing a thermal elasto-plastic analysis and comparing it with the experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...