Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.214
Filtrar
1.
Apoptosis ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824479

RESUMO

This study aimed to explore the expression, function, and mechanisms of TBC1D10B in colon cancer, as well as its potential applications in the diagnosis and treatment of the disease.The expression levels of TBC1D10B in colon cancer were assessed by analyzing the TCGA and CCLE databases. Immunohistochemistry analysis was conducted using tumor and adjacent non-tumor tissues from 68 colon cancer patients. Lentiviral infection techniques were employed to silence and overexpress TBC1D10B in colon cancer cells. The effects on cell proliferation, migration, and invasion were evaluated using CCK-8, EDU, wound healing, and Transwell invasion assays. Additionally, GSEA enrichment analysis was used to explore the association of TBC1D10B with biological pathways related to colon cancer. TBC1D10B was significantly upregulated in colon cancer and closely associated with patient prognosis. Silencing of TBC1D10B notably inhibited proliferation, migration, and invasion of colon cancer cells and promoted apoptosis. Conversely, overexpression of TBC1D10B enhanced these cellular functions. GSEA analysis revealed that TBC1D10B is enriched in the AKT/PI3K/mTOR signaling pathway and highly correlated with PAK4. The high expression of TBC1D10B in colon cancer is associated with poor prognosis. It influences cancer progression by regulating the proliferation, migration, and invasion capabilities of colon cancer cells, potentially acting through the AKT/PI3K/mTOR signaling pathway. These findings provide new targets and therapeutic strategies for the treatment of colon cancer.

2.
Colloids Surf B Biointerfaces ; 241: 113989, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38838444

RESUMO

Icariin has been shown the promising therapeutic potential to treat inflammatory airway diseases, yet its poor lung distribution and retention restrict the clinical applications. To this end, this work aimed to prepare an icariin-phospholipid complex (IPC) formulation for sustained nebulization delivery that enabled excellent inhalability, improved lung exposure and prolonged duration of action. Icariin was found to react with soybean phospholipid to form supramolecular IPC, which was able to self-assemble into nanoparticle suspension. The suspension was stable during steam sterilization and nebulization processes, and its aerosols generated by a commercial nebulizer exhibited excellent aerodynamic properties and delivery efficiency. In vitro studies showed that the formation of complex sustained drug release, enhanced lung affinity and slowed lung clearance. The drug distribution in lung epithelial lining fluid (ELF) also demonstrated in vivo sustained release after intratracheal administration to mice. In addition, compared to free icariin, IPC improved the drug exposure to lung tissues and immune cells in the ELF by 4.61-fold and 39.5-fold, respectively. This resulted in improved and prolonged local anti-inflammatory effects up to 24 h in mice with lipopolysaccharide (LPS)-induced acute lung injury. Moreover, IPC improved survival rate of mice with acute respiratory distress syndrome (ARDS). Overall, the present phospholipid complex represented a promising formulation of icariin for the treatment of acute lung injury/ARDS by nebulization delivery.

3.
J Phys Chem A ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832757

RESUMO

Alkanes, ideal raw materials for industrial chemical production, typically exhibit limited reactivity due to their robust and weakly polarized C-H bonds. The challenge lies in selectively activating these C-H bonds under mild conditions. To address this challenge, various C-H activation mechanisms have been developed. Yet, classifying these mechanisms depends on the overall stoichiometry, which can be ambiguous and sometimes problematic. In this study, we utilized density functional theory calculations combined with intrinsic bond orbital (IBO) analysis to examine electron flow in the four primary alkane C-H activation mechanisms: oxidative addition, σ-bond metathesis, 1,2-addition, and electrophilic activation. Methane was selected as the representative alkane molecule to undergo C-H heterolytic cleavage in these reactions. Across all mechanisms studied, we find that the CH3 moiety in methane consistently uses an electron pair from the cleaved C-H bond to form a σ-bond with the metal. Yet, the electron pair that accepts the proton differs with each mechanism: in oxidative addition, it is derived from the d-orbitals; in σ-bond metathesis, it resulted from the metal-ligand σ-bonds; in 1,2-addition, it arose from the π-orbital of the metal-ligand multiple bonds; and in electrophilic activation, it came from the lone pairs on ligands. This detailed analysis not only provides a clear visual understanding of these reactions but also showcases the ability of the IBO method to differentiate between mechanisms. The electron flow discerned from IBO analysis is further corroborated by results from absolutely localized molecular orbital energy decomposition analysis, which also helps to quantify the two predominant interactions in each process. Our findings offer profound insights into the electron dynamics at play in alkane C-H activation, enhancing our understanding of these critical reactions.

4.
Nat Commun ; 15(1): 4736, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830886

RESUMO

Earthquakes are rupture-like processes that propagate along tectonic faults and cause seismic waves. The propagation speed and final area of the rupture, which determine an earthquake's potential impact, are directly related to the nature and quantity of the energy dissipation involved in the rupture process. Here, we present the challenges associated with defining and measuring the energy dissipation in laboratory and natural earthquakes across many scales. We discuss the importance and implications of distinguishing between energy dissipation that occurs close to and far behind the rupture tip, and we identify open scientific questions related to a consistent modeling framework for earthquake physics that extends beyond classical Linear Elastic Fracture Mechanics.

5.
Perioper Med (Lond) ; 13(1): 50, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831440

RESUMO

BACKGROUND: The I-FEED classification, scored 0-8, was reported to accurately describe the clinical manifestations of gastrointestinal impairment after colorectal surgery. Therefore, it is interesting to determine whether the I-FEED scoring system is also applicable to patients undergoing lumbar spine surgery. METHODS: Adult patients undergoing elective lumbar spine surgery were enrolled, and the I-FEED score was measured for 4 days after surgery. The I-FEED scoring system incorporates five elements: intake (score: 0, 1, 3), feeling nauseated (score: 0, 1, 3), emesis (score: 0, 1, 3), results of physical exam (score: 0, 1, 3), and duration of symptoms (score: 0, 1, 2). Daily I-FEED scores were summed, and the highest overall score is used to categorize patients into one of three categories: normal (0-2 points), postoperative gastrointestinal intolerance (POGI; 3-5 points), and postoperative gastrointestinal dysfunction (POGD; 6 + points). The construct validity hypothesis testing determines whether the I-FEED category is consistent with objective clinical findings relevant to gastrointestinal impairment, namely, the longer length of hospital stay (LOS), higher inhospital medical cost, more postoperative gastrointestinal medical treatment, and more postoperative non-gastrointestinal complications. RESULTS: A total of 156 patients were enrolled, and 25.0% of patients were categorized as normal, 49.4% POGI, and 25.6% POGD. Patients with higher I-FEED scores agreed with the four validity hypotheses. Patients with POGD had a significantly longer length of hospital stay (1 day longer median stay; p = 0.049) and more inhospital medical costs (approximately 500 Taiwanese dollars; p = 0.037), and more patients with POGD required rectal laxatives (10.3% vs. 32.5% vs. 32.5%; p = 0.026). In addition, more patients with POGD had non-gastrointestinal complications (5.1% vs. 11.7% vs. 30.0%; p = 0.034). CONCLUSION: This study contributes preliminary validity evidence for the I-FEED score as a measure for postoperative gastrointestinal impairment after elective lumbar spine surgery.

6.
mBio ; : e0064024, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727246

RESUMO

Interleukin-18 binding protein (IL-18BP), a natural regulator molecule of the pro-inflammatory cytokine interleukin-18 (IL-18), plays an important role in regulating the expression of the cellular immunity factor interferon-γ (IFN-γ). In a previous RNA-seq analysis of porcine alveolar macrophages (PAM) infected with the TIM and TJ strains of porcine reproductive and respiratory syndrome virus (PRRSV), we unexpectedly found that the mRNA expression of porcine interleukin 18-binding protein (pIL-18BP) in PAM cells infected with the TJM strain was significantly higher than that infected with the TJ strain. Studies have shown that human interleukin-18 binding protein (hIL-18bp) plays an important role in regulating cellular immunity in the course of the disease. However, there is a research gap on pIL-18BP. At the same time, PRRSV infection in pigs triggers weak cellular immune response problems. To explore the expression and the role of pIL-18BP in the cellular immune response induced by PRRSV, we strived to acquire the pIL-18BP gene from PAM or peripheral blood mononuclear cell (PBMC) with RT-PCR and sequencing. Furthermore, pIL-18BP and pIL-18 were both expressed prokaryotically and eukaryotically. The colocalization and interaction based on recombinant pIL-18BP and pIL-18 on cells were confirmed in vitro. Finally, the expression of pIL-18BP, pIL-18, and pIFN-γ was explored in pigs with different PRRSV infection states to interpret the biological function of pIL-18BP in vivo. The results showed there were five shear mutants of pIL-18BP. The mutant with the longest coding region was selected for subsequent functional validation. First, it was demonstrated that TJM-induced pIL-18BP mRNA expression was higher than that of TJ. A direct interaction between pIL-18BP and pIL-18 was confirmed through fluorescence colocalization, bimolecular fluorescent complimentary (BIFC), and co-immunoprecipitation (CO-IP). pIL-18BP also can regulate pIFN-γ mRNA expression. Finally, the expression of pIL-18BP, pIL-18, and pIFN-γ was explored in different PRRSV infection states. Surprisingly, both mRNA and protein expression of pIL-18 were suppressed. These findings fill the gap in understanding the roles played by pIL-18BP in PRRSV infection and provide a foundation for further research.IMPORTANCEPRRSV-infected pigs elicit a weak cellular immune response and the mechanisms of cellular immune regulation induced by PRRSV have not yet been fully elucidated. In this study, we investigated the role of pIL-18BP in PRRSV-induced immune response referring to the regulation of human IL-18BP to human interferon-gamma (hIFN-γ). This is expected to be used as a method to enhance the cellular immune response induced by the PRRSV vaccine. Here, we mined five transcripts of the pIL-18BP gene and demonstrated that it interacts with pIL-18 and regulates pIFN-γ mRNA expression. Surprisingly, we also found that both mRNA and protein expression of pIL-18 were suppressed under different PRRSV strains of infection status. These results have led to a renewed understanding of the roles of pIL-18BP and pIL-18 in cellular immunity induced by PRRSV infection, which has important implications for the prevention and control of PRRS.

7.
Acta Pharmacol Sin ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760543

RESUMO

Bevacizumab is a recombinant humanized monoclonal immunoglobulin (Ig) G1 antibody of VEGF, and inhibits angiogenesis and tumor growth in hepatocellular carcinoma (HCC). Ferroptosis, a new form of regulated cell death function independently of the apoptotic machinery, has been accepted as an attractive target for pharmacological intervention; the ferroptosis pathway can enhance cell immune activity of anti-PD1 immunotherapy in HCC. In this study we investigated whether and how bevacizumab regulated ferroptosis and immune activity in liver cancer. Firstly, we performed RNA-sequencing in bevacizumab-treated human liver cancer cell line HepG2 cells, and found that bevacizumab significantly altered the expression of a number of genes including VEGF, PI3K, HAT1, SLC7A11 and IL-9 in liver cancer, bevacizumab upregulated 37 ferroptosis-related drivers, and downregulated 17 ferroptosis-related suppressors in particular. We demonstrated that bevacizumab triggered ferroptosis in liver cancer cells by driving VEGF/PI3K/HAT1/SLC7A11 axis. Clinical data confirmed that the expression levels of VEGF were positively associated with those of PI3K, HAT1 and SLC7A11 in HCC tissues. Meanwhile, we found that bevacizumab enhanced immune cell activity in tumor immune-microenvironment. We identified that HAT1 up-regulated miR-143 targeting IL-9 mRNA 3'UTR in liver cancer cells; bevacizumab treatment resulted in the increase of IL-9 levels and its secretion via VEGF/PI3K/HAT1/miR-143/IL-9 axis, which led to the inhibition of tumor growth in vivo through increasing the release of IL-2 and Granzyme B from activated CD8+ T cells. We conclude that in addition to inhibiting angiogenesis, bevacizumab induces ferroptosis and enhances CD8+ T cell immune activity in liver cancer. This study provides new insight into the mechanisms by which bevacizumab synergistically modulates ferroptosis and CD8+ T cell immune activity in liver cancer.

8.
Leukemia ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750139

RESUMO

The clinical implications of CSF-ctDNA positivity in newly diagnosed diffuse large B cell lymphoma (ND-DLBCL) remains largely unexplored. One hundred ND-DLBCL patients were consecutively enrolled as training cohort and another 26 ND-DLBCL patients were prospectively enrolled in validation cohort. CSF-ctDNA positivity (CSF(+)) was identified in 25 patients (25.0%) in the training cohort and 7 patients (26.9%) in the validation cohort, extremely higher than CNS involvement rate detected by conventional methods. Patients with mutations of CARD11, JAK2, ID3, and PLCG2 were more predominant with CSF(+) while FAT4 mutations were negatively correlated with CSF(+). The downregulation of PI3K-AKT signaling, focal adhesion, actin cytoskeleton, and tight junction pathways were enriched in CSF(+) ND-DLBCL. Furthermore, pretreatment CSF(+) was significantly associated with poor outcomes. Three risk factors, including high CSF protein level, high plasma ctDNA burden, and involvement of high-risk sites were used to predict the risk of CSF(+) in ND-DLBCL. The sensitivity and specificity of pretreatment CSF-ctDNA to predict CNS relapse were 100% and 77.3%. Taken together, we firstly present the prevalence and the genomic and transcriptomic landscape for CSF-ctDNA(+) DLBCL and highlight the importance of CSF-ctDNA as a noninvasive biomarker in detecting and monitoring of CSF infiltration and predicting CNS relapse in DLBCL.

10.
Medicine (Baltimore) ; 103(20): e38279, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758867

RESUMO

To explore the influence of perinatal-related factors on meconium aspiration syndrome (MAS) in full-term neonates and construct a nomogram prediction model for risk stratification of neonatal MAS and adoption of preventive measures. A total of 424 newborns and their mothers who were regularly examined at our hospital between January 2020 and December 2023 who had meconium-contaminated amniotic fluid during delivery were retrospectively selected as participants. Neonates were divided into MAS and non-MAS groups based on whether MAS occurred within 3 days after birth. Data from the 2 groups were analyzed, and factors influencing MAS were screened using multivariate logistic regression analysis. The R3.4.3 software was used to construct a nomogram prediction model for neonatal MAS risk. Receiver operating characteristic (ROC) curve analysis and the Hosmer-Lemeshow goodness-of-fit test were used to evaluate the performance of the model, and its clinical effectiveness was evaluated using a decision curve. Among the 424 neonates with meconium-stained amniotic fluid, 51 developed MAS within 3 days of birth (12.03%). Multivariate logistic regression analysis showed that a low amniotic fluid index before delivery (OR = 2.862, P = .019), advanced gestational age (OR = 0.526, P = .034), cesarean section (OR = 2.650, P = .013), severe amniotic fluid contamination (OR = 4.199, P = .002), low umbilical cord blood pH (OR = 2.938, P = .011), and low neonatal Apgar 1-min score (OR = 3.133, P = .006) were influencing factors of MAS in full-term neonates. Based on the above indicators, a nomogram prediction model for MAS risk of full-term newborns was constructed. The area under the ROC curve of the model was 0.931. The model was also tested for goodness-of-fit deviation (χ2 = 3.465, P = .903). Decision curve analysis found that the model was clinically effective in predicting the net benefit of MAS risk in neonates with meconium-stained amniotic fluid. The construction of a column chart prediction model for neonatal MAS risk based on prenatal amniotic fluid index, gestational age, delivery method, amniotic fluid contamination level, newborn umbilical blood pH value, and Apgar 1-min score has a certain application value.


Assuntos
Líquido Amniótico , Síndrome de Aspiração de Mecônio , Nomogramas , Humanos , Síndrome de Aspiração de Mecônio/epidemiologia , Recém-Nascido , Feminino , Estudos Retrospectivos , Masculino , Gravidez , Medição de Risco/métodos , Fatores de Risco , Curva ROC , Idade Gestacional , Modelos Logísticos , Índice de Apgar , Cesárea/estatística & dados numéricos , Mecônio , Adulto
11.
J Food Sci ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778552

RESUMO

In this study, a series of collagen-chitosan-eugenol (CO-CS-Eu) flow-casting composite films were prepared using collagen from sturgeon skin, chitosan, and eugenol. The physicochemical properties, mechanical properties, microstructure, as well as antioxidant and antimicrobial activities of the composite membranes were investigated by various characterization techniques. The findings revealed that the inclusion of eugenol augmented the thickness of the film, darkened its color, reduced the transparency, and enhanced the ultraviolet light-blocking capabilities, with the physicochemical properties of the CO-CS-0.25%Eu film being notably favorable. Eugenol generates increasingly intricate matrices that disperse within the system, thereby modifying the optical properties of the material. Furthermore, the tensile strength of the film decreased from 70.97 to 20.32 MPa, indicating that eugenol enhances the fluidity and ductility of the film. Added eugenol also exhibited structural impact by loosening the film cross-section and decreasing its density. The Fourier transform infrared spectroscopy results revealed the occurrence of several intermolecular interactions among collagen, chitosan, and eugenol. Moreover, the incorporation of eugenol bolstered the antioxidant and antimicrobial capabilities of the composite film. This is primarily attributed to the abundant phenolic/hydroxyl groups present in eugenol, which can react with free radicals by forming phenoxy groups and neutralizing hydroxyl groups. Consequently, inclusion of eugenol substantially enhances the freshness retention performance of the composite film. PRACTICAL APPLICATION: ● The CO-CS-Eu film utilizes collagen from sturgeon skin, improving the use of sturgeon resources.● Different concentrations of eugenol altered its synergistic effect with chitosan.● The CO-CS-Eu film is composed of natural products with safe and edible properties.

12.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1865-1871, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812198

RESUMO

This study aims to reveal the dynamics of the HPLC fingerprint, chromaticity values, and main chemical components of Mori Cortex during the stir-frying process. The fingerprints of raw and processed products of Mori Cortex were established. The content of mulberroside A, oxyresveratrol, kuwanon G, and kuwanon H in the samples and the chromaticity values of the samples were determined. Furthermore, the similarity evaluation of fingerprints and the correlation analysis between fingerprints and chromaticity values were carried out. The results showed that the fingerprints of raw and processed products of Mori Cortex had high similarity, and the overall changes in the content of the main chemical components in the stir-frying process were similar. According to the experience, when the stir-frying is moderate, the total chromaticity value difference |ΔE~*_(ab)| is above 1.5. With the extension of stir-frying time, the L~* and E~*_(ab) values keep decreasing, and the a~* value keeps increasing. The results of the correlation analysis between fingerprints and chromaticity values showed that peaks 1(5-hydroxy maltol), 2(mulberroside A), 3, 4, 6, 7, 11(oxyresveratrol), 14, 17(kuwanon G), and 18(kuwanon H) had significant correlations with the chromaticity values. Quantitative analysis of the four components with higher content showed that the content of the four components decreased to varying degrees when the stir-frying was excessive. In addition, 5-hydroxy maltol was produced after stir-frying of Mori Cortex, and the fingerprint and chromaticity values showed regular changes during the stir-frying process. The chromaticity can be included in the evaluation of the stir-frying process of Mori Cortex, which provides a reference for standardizing the quality of stir-fried Mori Cortex.


Assuntos
Medicamentos de Ervas Chinesas , Morus , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Morus/química , Dissacarídeos , Estilbenos
13.
Mol Biol Rep ; 51(1): 648, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727802

RESUMO

BACKGROUND: Polygonatum kingianum holds significant importance in Traditional Chinese Medicine due to its medicinal properties, characterized by its diverse chemical constituents including polysaccharides, terpenoids, flavonoids, phenols, and phenylpropanoids. The Auxin Response Factor (ARF) is a pivotal transcription factor known for its regulatory role in both primary and secondary metabolite synthesis. However, our understanding of the ARF gene family in P. kingianum remains limited. METHODS AND RESULTS: We employed RNA-Seq to sequence three distinct tissues (leaf, root, and stem) of P. kingianum. The analysis revealed a total of 31,558 differentially expressed genes (DEGs), with 43 species of transcription factors annotated among them. Analyses via gene ontology and the Kyoto Encyclopedia of Genes and Genomes demonstrated that these DEGs were predominantly enriched in metabolic pathways and secondary metabolite biosynthesis. The proposed temporal expression analysis categorized the DEGs into nine clusters, suggesting the same expression trends that may be coordinated in multiple biological processes across the three tissues. Additionally, we conducted screening and expression pattern analysis of the ARF gene family, identifying 12 significantly expressed PkARF genes in P. kingianum roots. This discovery lays the groundwork for investigations into the role of PkARF genes in root growth, development, and secondary metabolism regulation. CONCLUSION: The obtained data and insights serve as a focal point for further research studies, centred on genetic manipulation of growth and secondary metabolism in P. kingianum. Furthermore, these findings contribute to the understanding of functional genomics in P. kingianum, offering valuable genetic resources.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas de Plantas , Plantas Medicinais , Polygonatum , Transcriptoma , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Polygonatum/genética , Polygonatum/metabolismo , Transcriptoma/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica/métodos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ontologia Genética , Folhas de Planta/genética , Folhas de Planta/metabolismo
14.
Viruses ; 16(5)2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38793564

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is a pathogen that causes severe abortions in sows and high piglet mortality, resulting in huge economic losses to the pig industry worldwide. The emerging and novel PRRSV isolates are clinically and biologically important, as there are likely recombination and pathogenic differences among PRRSV genomes. Furthermore, the NADC34-like strain has become a major epidemic strain in some parts of China, but the characterization and pathogenicity of the latest strain in Inner Mongolia have not been reported in detail. In this study, an NADC34-like strain (CHNMGKL1-2304) from Tongliao City, Inner Mongolia was successfully isolated and characterized, and confirmed the pathogenicity in pigs. The phylogenetic tree showed that this strain belonged to sublineage 1.5 and had high homology with the strain JS2021NADC34. There is no recombination between CHNMGKL1-2304 and any other domestic strains. Animal experiments show that the CHNMGKL1-2304 strain is moderately virulent to piglets, which show persistent fever, weight loss and high morbidity but no mortality. The presence of PRRSV nucleic acids was detected in both blood, tissues, nasal and fecal swabs. In addition, obvious pathological changes and positive signals were observed in lung, lymph node, liver and spleen tissues when subjected to hematoxylin-eosin (HE) staining and immunohistochemistry (IHC). This report can provide a basis for epidemiological investigations and subsequent studies of PRRSV.


Assuntos
Genoma Viral , Filogenia , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Vírus da Síndrome Respiratória e Reprodutiva Suína/classificação , China , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/patologia , Virulência , Evolução Molecular
15.
Cytotherapy ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38795116

RESUMO

Autologous peripheral blood stem cell (PBSC) transplantation is crucial in pediatric cancer treatment, and tandem transplantation is beneficial in certain malignancies. Collecting PBSCs in small children with low body weight is challenging. We retrospectively analyzed data of pediatric cancer patients weighing <15 kg who underwent autologous PBSC harvesting in our hospital. Collections were performed in the pediatric intensive care unit over 2 or 3 consecutive days, to harvest sufficient stem cells (goal ≥2 × 106 CD34+ cells/kg per apheresate). From April 2006 to August 2021, we performed 129 collections after 50 mobilizations in 40 patients, with a median age of 1.9 (range, 0.6-5.6) years and a body weight of 11.0 (range, 6.6-14.7) kg. The median CD34+ cells in each apheresate were 4.2 (range, 0.01-40.13) × 106/kg. 78% and 56% of mobilizations achieved sufficient cell dose for single or tandem transplantation, respectively, without additional aliquoting. The preapheresis hematopoietic progenitor cell (HPC) count was highly correlated with the CD34+ cell yield in the apheresate (r = 0.555, P < 0.001). Granulocyte colony-stimulating factor alone was not effective for mobilization in children ≥2 years of age, even without radiation exposure. By combining the preapheresis HPC count ≥20/µL and the 3 significant host factors, including age <2 years, no radiation exposure and use of chemotherapy, the prediction rate of goal achievement was increased (area under the curve 0.787).

16.
Artigo em Inglês | MEDLINE | ID: mdl-38758500

RESUMO

Due to the unique physiological barriers within the lungs, there are considerable challenges in developing drug delivery systems enabling prolonged drug exposure to respiratory epithelial cells. Here, we report a PulmoSphere-based dry powder technology that incorporates a drug-phospholipid complex to promote intracellular retention of dehydroandrographolide succinate (DAS) in respiratory epithelial cells following pulmonary delivery. The DAS-phospholipid complex has the ability to self-assemble into nanoparticles. After spray-drying to produce PulmoSphere microparticles loaded with the drug-phospholipid complex, the rehydrated microparticles discharge the phospholipid complex without altering its physicochemical properties. The microparticles containing the DAS-phospholipid complex exhibit remarkable aerodynamic properties with a fine particle fraction of ∼ 60% and a mass median aerodynamic diameter of ∼ 2.3 µm. These properties facilitate deposition in the alveolar region. In vitro cell culture and lung tissue explants experiments reveal that the drug-phospholipid complex prolongs intracellular residence time and lung tissue retention due to the slow intracellular disassociation of drug from the complex. Once deposited in the lungs, the DAS-phospholipid complex loaded microparticles increase and extend drug exposure to the lung tissues and the immune cells compared to the free DAS counterpart. The improved drug exposure to airway epithelial cells, but not immune cells, is related to a prolonged duration of pulmonary anti-inflammation at decreased doses in a mouse model of acute lung injury induced by lipopolysaccharide. Overall, the phospholipid complex loaded microparticles present a promising approach for improved treatment of respiratory diseases, e.g. pneumonia and acute respiratory distress syndrome.

17.
IDCases ; 36: e01942, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699527

RESUMO

Human granulocytic anaplasmosis (HGA) is a tick-borne illness caused by infection with Anaplasma phagocytophilum. Although rare, rhabdomyolysis and acute renal failure are potential complications of HGA. We present the case of an 86-year-old male who exhibited severe myopathy, rhabdomyolysis, and acute renal failure necessitating hemodialysis. Treatment with doxycycline resulted in partial renal function improvement, allowing discontinuation of dialysis after 8 weeks. This case underscores the importance of considering rhabdomyolysis as a manifestation of HGA, particularly in individuals residing in or traveling to endemic areas.

19.
Materials (Basel) ; 17(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38793449

RESUMO

The undoped and tungsten (W)-doped vanadium dioxide (VO2) thin films were prepared by electron beam evaporation associated with ion-beam-assisted deposition (IAD). The influence of different W-doped contents (3-5%) on the electrical, optical, structural, and thermo-mechanical properties of VO2 thin films was investigated experimentally. Spectral transmittance results showed that with the increase in W-doped contents, the transmittance in the visible light range (400-750 nm) decreases from 60.2% to 53.9%, and the transmittance in the infrared wavelength range (2.5 µm to 5.5 µm) drops from 55.8% to 15.4%. As the W-doped content increases, the residual stress in the VO2 thin film decreases from -0.276 GPa to -0.238 GPa, but the surface roughness increases. For temperature-dependent spectroscopic measurements, heating the VO2 thin films from 30 °C to 100 °C showed the most significant change in transmittance for the 5% W-doped VO2 thin film. When the heating temperature exceeds 55 °C, the optical transmittance drops significantly, and the visible light transmittance drops by about 11%. Finally, X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to evaluate the microstructure characteristics of VO2 thin films.

20.
Pharmaceuticals (Basel) ; 17(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38794195

RESUMO

Chronic kidney disease (CKD) affects more than 10% of the global population, and its incidence is increasing, partially due to an increase in the prevalence of disease risk factors. Acute kidney injury (AKI) is an independent risk factor for CKD and end-stage renal disease (ESRD). The pathogenic mechanisms of CKD provide several potential targets for its treatment. However, due to off-target effects, conventional drugs for CKD typically require high doses to achieve adequate therapeutic effects, leading to long-term organ toxicity. Therefore, ideal treatments that completely cure the different types of kidney disease are rarely available. Several approaches for the drug targeting of the kidneys have been explored in drug delivery system research. Nanotechnology-based drug delivery systems have multiple merits, including good biocompatibility, suitable degradability, the ability to target lesion sites, and fewer non-specific systemic effects. In this review, the development, potential, and limitations of low-molecular-weight protein-lysozymes, polymer nanomaterials, and lipid-based nanocarriers as drug delivery platforms for treating AKI and CKD are summarized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...