Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 19707, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873111

RESUMO

Air pollution resulted from fossil fuel burning has been an environmental issue in developing countries in Asia. Sulfur-bearing compounds, in particular, are species that are regulated and monitored routinely. To assess how the species affect at local and global scales, regional background level has to be defined. Here, we report analysis of sulfur isotopes in atmospheric sulfate, the oxidation end product of sulfur species, in particulate phase collected at the Lulin observatory located at 2862 m above mean sea level in 2010. The averaged sulfate concentration for 44 selected samples is 2.7 ± 2.3 (1-σ standard deviation) µg m-3, and the averaged δ34S is 2.2 ± 1.6‰, with respect to the international standard Vienna Canyon Diablo Troilite. Regardless of the origins of air masses, no noticeable difference between the low-altitude Pacific and high-altitude free troposphere sulfate aerosols is observed. Also, no identifiable seasonal cycle in seen. Correlation analysis with respect to coal burning tracers such as lead and oil industry tracers such as vanadium shows sulfate concentration is in better correlation with vanadium (R2 = 0.86, p-value < 0.001) than with lead (R2 = 0.45, p-value < 0.001) but no statistically significant correlation is found in δ34S with any of physical quantities measured. We suggest the sulfate collected at Lulin can best represent the regional background level in the Western Pacific, a quantity that is needed in order to quantitatively assess the budget of sulfur in local to country scales.

2.
Environ Technol ; 40(12): 1592-1604, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-29323632

RESUMO

This study systematically evaluates Neodymium (Nd) recovery from actual seawaters and wastewater using functionalized magnetic ferrite (3-mercaptopropionic acid-tetraethyl orthosilicate ferrite, MPA-TEOS-ferrite). The recovery of Nd by MPA-TEOS-ferrite displayed an L-shaped nonlinear isotherm, suggesting limiting binding sites on the adsorbent surface. At room temperature, a significant recovery of Nd by MPA-TEOS-ferrite increased from 8.99% to 99.99% with increasing pH (2.89-8.16) and an enhanced maxima Nd recovery capacity was observed on MPA-TEOS-ferrite (25.58 mg/g) when compared with pure ferrite (22.27 mg/g). The L3-edge X-ray absorption near-edge structure (XANES) spectra for the adsorbents collected after Nd recovery indicated that Nd(III) was still the predominant oxidation species on the surface of MPA-TEOS-ferrite. Only slightly change in the oxidation state or electronic structure around the Nd ions could be found during the adsorption process. Importantly, no significant change was found on Nd recovery while the NaCl ionic strength increased from 0.01 to 0.5 N. Furthermore, the results also displayed that the synthesized MPA-TEOS-ferrite has a great potential in efficient and rapid recovery of Nd from seawaters and wastewater.


Assuntos
Compostos Férricos , Neodímio , Magnetismo , Reciclagem
3.
Environ Geochem Health ; 38(3): 737-48, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26254888

RESUMO

Isotopic compositions of B and Sr in rocks and sediments can be used as tracers for plant provincial sources. This study aims to test whether tea leaf origin can be discriminated using (10)B/(11)B and Sr isotopic composition data, along with concentrations of major/trace elements, in tea specimens collected from major plantation gardens in Taiwan. The tea leaves were digested by microwave and analyzed by multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS). The data showed significant variations in (87)Sr/(86)Sr ratios (from 0.70482 to 0.71462), which reflect changes in soil, groundwater or irrigation conditions. The most radiogenic tea leaves were found at the Taitung garden and the least radiogenic ones were from the Hualien garden. The δ (11)B was found to change appreciably (δ (11)B = 0.38-23.73 ‰) which could be due to fertilizers. The maximum δ (11)B was also observed in tea samples from the Hualien garden. Principal component analysis combining (87)Sr/(86)Sr, δ (11)B and major/trace elements results successfully discriminated different sources of major tea gardens in Taiwan, except the Hualien gardens, and this may be due to rather complicated local geological settings.


Assuntos
Boro/análise , Camellia sinensis/química , Isótopos de Estrôncio/análise , Oligoelementos/análise , Isótopos/análise , Espectrometria de Massas , Folhas de Planta/química , Taiwan , Chá/química
4.
Anal Bioanal Chem ; 408(2): 387-97, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26458563

RESUMO

A protocol for highly accurate and precise determination of Sr isotope ratios in plant materials, (87)Sr/(86)Sr and δ (88/86)Sr, by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) is presented in this study. An Eichrom Sr resin was used for matrix separation and an improved Zr empirical external normalization coupled with standard-sample bracketing method (Zr EEN-SSB) was applied to mass bias correction during Sr isotope MC-ICP-MS measurements. Potential influences of matrix elements, and polyatomic and isobaric interferences on the Sr isotopic determination were further evaluated using NIST SRM 987 Sr isotopic standard spiked with various amount of Ca, Mg, and Rb contents. Concentrations of Ca and Mg lower than 30 ng g(-1) or Rb < 2 ng g(-1) in 150 ng g(-1) Sr analyte were estimated to have only a minor effect on Sr isotope ratios determination. On the other hand, intensity differences between sample and standards (IntSample/IntStandards) represented a large δ (88/86)Sr deviation of <0.9 or >1.3, reflecting the significance of intensity bias attributed to different mass bias behavior. An apple leaf material, NIST SRM 1515, was adopted as the plant material for overall evaluation of sample digestion, matrix separation, and potential spectral interferences on the measurements of Sr isotope ratios. Our results suggest that the partially remaining organic compounds in the incomplete digestion would have a significant bias on the extraction chromatography procedure, resulting in sizable uncertainty in δ (88/86)Sr ratios. Thus, complete digestion of the organic-enriched materials is of great importance for efficiency assurance in matrix separation. Extraction chromatography works well for the total digested samples, where Ca, Mg, and Rb were efficiently removed. The obtained average (87)Sr/(86)Sr and δ (88/86)Sr values for the NIST SRM 1515 apple leaves are 0.71398 ± 0.00004 and 0.23 ± 0.03‰ (2SD, n = 10), respectively.


Assuntos
Malus/química , Espectrometria de Massas/métodos , Isótopos de Estrôncio/química , Folhas de Planta/química , Folhas de Planta/metabolismo
5.
Analyst ; 139(4): 734-41, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24434804

RESUMO

We describe a method for rapid, precise and accurate determination of calcium ion (Ca(2+)) concentration in seawater using isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS). A 10 µL aliquot of seawater was spiked with an appropriate (43)Ca enriched solution for (44)Ca/(43)Ca ID-ICP-MS analyses, using an Element XR (Thermo Fisher Scientific), operated at low resolution in E-scan acquisition mode. A standard-sample bracketing technique was applied to correct for potential mass discrimination and ratio drift at every 5 samples. A precision of better than 0.05% for within-run and 0.10% for duplicate measurements of the IAPSO seawater standard was achieved using 10 µL solutions with a measuring time less than 3 minutes. Depth profiles of seawater samples collected from the Arctic Ocean basin were processed and compared with results obtained by the classic ethylene glycol tetra-acetic acid (EGTA) titration. Our new ID-ICP-MS data agreed closely with the conventional EGTA data, with the latter consistently displaying 1.5% excess Ca(2+) values, possibly due to a contribution of interference from Mg(2+) and Sr(2+) in the EGTA titration. The newly obtained Sr/Ca profiles reveal sensitive water mass mixing in the upper oceanic column to reflect ice melting in the Arctic region. This novel technique provides a tool for seawater Ca(2+) determination with small sample size, high throughput, excellent internal precision and external reproducibility.

6.
Talanta ; 88: 338-44, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22265508

RESUMO

The non-traditional stable strontium (Sr) isotopes have received increasing attention recently as new geochemical tracers for studying Sr isotopic fractionation and source identification. This has been attributed to the advancement in multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), allows to determine precisely and simultaneously of the triple Sr isotopes. In this study, we applied a modified empirical external normalization (EEN) MC-ICPMS procedure for mass bias correction in Sr isotopic measurement using (92)Zr/(90)Zr. High-purity Zr Standard was spiked into sample solutions and the degree of fractionation was calculated off-line using an exponential law. The long-term external reproducibility for NIST SRM 987 δ(87)Sr and δ(88)Sr was better than 0.040‰ and 0.018‰ (2SD), respectively. The IAPSO standard seawater was used as a secondary standard to validate the analytical protocol and the absolute ratios measured were 0.709161±0.000018 for (87)Sr/(86)Sr, 0.177±0.021‰ for δ(87)Sr, and 0.370±0.026‰ for δ(88)Sr (2SD, n=7). These values are in good agreement with the literature data analyzed by thermal ionization mass spectrometry (TIMS) double spike technique. Rock standards, BHVO-2, BCR-2 and AGV-2 were also analyzed to validate the robustness of the methodology and showed identical results with literature data. Compared to previous (91)Zr/(90)Zr correction, we obtained improved results based on (92)Zr/(90)Zr, probably due to similar mass difference between (92)Zr/(90)Zr and measured Sr isotopes. The new analytical protocol presented in this study not only improves the analytical precision but also increases sample efficiency by omitting the use of the standard-sample bracketing (SSB) procedure.

7.
Talanta ; 82(4): 1378-84, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20801344

RESUMO

An improved technique for precise and accurate determination of boron isotopic composition in Na-rich natural waters (groundwater, seawater) and marine biogenic carbonates was developed. This study used a 'micro-sublimation' technique to separate B from natural sample matrices in place of the conventional ion-exchange extraction. By adjusting analyte to appropriate pH, quantitative recovery of boron can be achieved (>98%) and the B procedural blank is limited to <8 pg. An additional mass bias effect in MC-ICP-MS was observed which could not be improved via the standard-sample-standard bracketing or the 'pseudo internal' normalization by Li. Therefore a standard other than NBS SRM 951 was used to monitor plasma condition in order to maintain analytical accuracy. An isotope cross-calibration with results from TIMS shows that the space-charge mass bias on MC-ICP-MS can be successfully corrected using off-line mathematical manipulation. Several reference materials, including the seawater IAPSO and two groundwater standards IAEA-B-2 and IAEA-B-3, were used to validate this approach. We found that the delta(11)B of the reference coral JCp-1 was 24.22+/-0.28 per thousand, corresponding to seawater pH based on the coral delta(11)B-pH function.

8.
Anal Chem ; 81(17): 7420-7, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19650634

RESUMO

A novel approach to obtain a fractionation free (11)B/(10)B isotope ratio based on oxygen isotopes determined in situ from the same filament loading by N-TIMS is described. The method uses only a few nanograms of B to produce BO(2)(-) ions. First, the oxygen isotopes are determined at a lower filament temperature using ReO(4)(-) ions and employing (187)Re/(185)Re for internal normalization. Subsequently, the filament temperature is increased to get sufficient BO(2)(-) ions and predetermined (18)O/(16)O isotopes from the same filament loading is used to correct for boron mass fractionation. The validity of the method has been demonstrated by analyzing a NIST-SRM-951 boron isotopic certified standard, two synthetic B mixtures, and two coral reference materials. An average analytical precision of 0.6 per thousand (n = 6) has been demonstrated. This is an important and crucial step forward in making the application of BO(2)(-) ions by N-TIMS routine in coral, foraminifera, and other samples where only limited amounts of boron are available. This new method does not require any additional effort in loading or in carrying out the mass spectrometric analysis but eliminates the need of assuming a fixed (18)O/(16)O ratio and thus provides higher accuracy for applications in paleo-oceanography, geochemistry, and cosmo-chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...