Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Exp Mol Med ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760512

RESUMO

Neuropathic pain is a debilitating condition caused by the hyperexcitability of spinal dorsal horn neurons and is often characterized by allodynia. Although neuron-independent mechanisms of hyperexcitability have been investigated, the contribution of astrocyte-neuron interactions remains unclear. Here, we show evidence of reactive astrocytes and their excessive GABA release in the spinal dorsal horn, which paradoxically leads to the tonic excitation of neighboring neurons in a neuropathic pain model. Using multiple electrophysiological methods, we demonstrated that neuronal hyperexcitability is attributed to both increased astrocytic GABA synthesis via monoamine oxidase B (MAOB) and the depolarized reversal potential of GABA-mediated currents (EGABA) via the downregulation of the neuronal K+/Cl- cotransporter KCC2. Furthermore, longitudinal 2-deoxy-2-[18F]-fluoro-D-glucose microPET imaging demonstrated increased regional glucose metabolism in the ipsilateral dorsal horn, reflecting neuronal hyperexcitability. Importantly, inhibiting MAOB restored the entire astrocytic GABA-mediated cascade and abrogated the increased glucose metabolism and mechanical allodynia. Overall, astrocytic GABA-mediated tonic excitation is critical for neuronal hyperexcitability, leading to mechanical allodynia and neuropathic pain.

2.
J Biophotonics ; 17(1): e202300126, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37545037

RESUMO

Laser speckle imaging (LSI) techniques have emerged as a promising method for visualizing functional blood vessels and tissue perfusion by analyzing the speckle patterns generated by coherent light interacting with living biological tissue. These patterns carry important biophysical tissue information including blood flow dynamics. The noninvasive, label-free, and wide-field attributes along with relatively simple instrumental schematics make it an appealing imaging modality in preclinical and clinical applications. The review outlines the fundamentals of speckle physics and the three categories of LSI techniques based on their degree of quantification: qualitative, semi-quantitative and quantitative. Qualitative LSI produces microvascular maps by capturing speckle contrast variations between blood vessels containing moving red blood cells and the surrounding static tissue. Semi-quantitative techniques provide a more accurate analysis of blood flow dynamics by accounting for the effect of static scattering on spatiotemporal parameters. Quantitative LSI such as optical speckle image velocimetry provides quantitative flow velocity measurements, which is inspired by the particle image velocimetry in fluid mechanics. Additionally, discussions regarding the prospects of future innovations in LSI techniques for optimizing the vascular flow quantification with associated clinical outlook are presented.


Assuntos
Diagnóstico por Imagem , Hemodinâmica , Lasers , Luz
3.
In Vivo ; 37(5): 2039-2043, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37652486

RESUMO

BACKGROUND/AIM: Urinary bladder cancer has various etiologies and tends to recur and then progress to a higher grade. When muscles are invaded, the response to conventional therapy is poor and the quality of life deteriorates rapidly. Here, we summarize and compare two representative methods used to create the syngeneic mouse models required for immunological research. MATERIALS AND METHODS: In this study, we utilized six-week-old female C3H/HeNCrl mice and the mouse bladder tumor cell line MBT-2. The first method involved transurethral catheterization with poly-L-lysine pretreatment (catheter group), while the second method involved transperitoneal incision and direct injection of tumor cells into the bladder wall (open group). Mouse postoperative status was monitored on a weekly basis using magnetic resonance imaging (MRI). RESULTS: The catheter group had a tumor development rate of 47% (7 out of 15 mice), with only 1 mouse developing an intravesical tumor. In contrast, the open group had a higher tumor formation rate of 69% (47 out of 68 mice), with 27 mice showing intravesical tumor formation. Notably, with a lower cell count, urinary obstruction events were observed 2 weeks post-inoculation, which is one week later than the higher cell count group. CONCLUSION: In this study, we conducted a comparative analysis between the transurethral catheterization method and the transperitoneal incision and direct injection method in animal bladder tumor models. Our findings provide evidence of the consistent effectiveness in constructing a stable model within the open group. Well-designed orthotopic animal models are essential.


Assuntos
Qualidade de Vida , Neoplasias da Bexiga Urinária , Feminino , Animais , Camundongos , Camundongos Endogâmicos C3H , Recidiva Local de Neoplasia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/patologia , Bexiga Urinária/patologia , Modelos Animais de Doenças
4.
Exp Neurol ; 367: 114462, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37295546

RESUMO

An ischemic stroke typically accompanies numerous disorders ranging from somatosensory dysfunction to cognitive impairments, inflicting patients with various neurologic symptoms. Among pathologic outcomes, post-stroke olfactory dysfunctions are frequently observed. Despite the well-known prevalence, therapy options for such compromised olfaction are limited, likely due to the complexity of olfactory bulb architecture, which encompasses both the peripheral and central nervous systems. As photobiomodulation (PBM) emerged for treating ischemia-associated symptoms, the effectiveness of PBM on stroke-induced impairment of olfactory function was explored. Novel mouse models with olfactory dysfunctions were prepared using photothrombosis (PT) in the olfactory bulb on day 0. The post-PT PBM was performed daily from day 2 to day 7 by irradiating the olfactory bulb via an 808 nm laser with a fluence of 40 J/cm2 (325 mW/cm2 for 2  smin per day). The buried food test (BFT) was used to score behavioral acuity in food-deprived mice to assess the olfactory function before PT, after PT, and after PBM. Histopathological examinations and cytokine assays were performed on the mouse brains harvested on day 8. The results from BFT were specific to an individual, with positive correlations between the baseline latency time measured before PT and its alteration at the ensuing stages for both the PT and PT + PBM groups. Also, the correlation analysis in both groups showed highly similar, significant positive relationships between the early and late latency time change independent of PBM, implicating a common recovery mechanism. Particularly, PBM treatment accelerated the recovery of impaired olfaction following PT by suppressing inflammatory cytokines and enhancing both glial and vascular factors (e.g., GFAP, IBA-1, and CD31). PBM therapy during the acute phase of ischemia improves the compromised olfactory function by modulating microenvironments and inflammation status of the affected tissue.


Assuntos
Terapia com Luz de Baixa Intensidade , Acidente Vascular Cerebral , Camundongos , Animais , Bulbo Olfatório , Modelos Animais de Doenças , Isquemia
5.
Opt Express ; 30(11): 19152-19164, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221700

RESUMO

In microscopic imaging of biological tissues, particularly real-time visualization of neuronal activities, rapid acquisition of volumetric images poses a prominent challenge. Typically, two-dimensional (2D) microscopy can be devised into an imaging system with 3D capability using any varifocal lens. Despite the conceptual simplicity, such an upgrade yet requires additional, complicated device components and usually suffers from a reduced acquisition rate, which is critical to properly document rapid neurophysiological dynamics. In this study, we implemented an electrically tunable lens (ETL) in the line-scan confocal microscopy (LSCM), enabling the volumetric acquisition at the rate of 20 frames per second with a maximum volume of interest of 315 × 315 × 80 µm3. The axial extent of point-spread-function (PSF) was 17.6 ± 1.6 µm and 90.4 ± 2.1 µm with the ETL operating in either stationary or resonant mode, respectively, revealing significant depth axial penetration by the resonant mode ETL microscopy. We further demonstrated the utilities of the ETL system by volume imaging of both cleared mouse brain ex vivo samples and in vivo brains. The current study showed a successful application of resonant ETL for constructing a high-performance 3D axially scanning LSCM (asLSCM) system. Such advances in rapid volumetric imaging would significantly enhance our understanding of various dynamic biological processes.


Assuntos
Cristalino , Lentes , Animais , Eletricidade , Camundongos , Microscopia Confocal/métodos , Cintilografia
6.
Theranostics ; 12(14): 6308-6338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36168630

RESUMO

Diabetes mellitus accompanies an abnormally high glucose level in the bloodstream. Early diagnosis and proper glycemic management of blood glucose are essential to prevent further progression and complications. Biosensor-based colorimetric detection has progressed and shown potential in portable and inexpensive daily assessment of glucose levels because of its simplicity, low-cost, and convenient operation without sophisticated instrumentation. Colorimetric glucose biosensors commonly use natural enzymes that recognize glucose and chromophores that detect enzymatic reaction products. However, many natural enzymes have inherent defects, limiting their extensive application. Recently, nanozyme-based colorimetric detection has drawn attention due to its merits including high sensitivity, stability under strict reaction conditions, flexible structural design with low-cost materials, and adjustable catalytic activities. This review discusses various nanozyme materials, colorimetric analytic methods and mechanisms, recent machine learning based analytic methods, quantification systems, applications and future directions for monitoring and managing diabetes.


Assuntos
Técnicas Biossensoriais , Diabetes Mellitus , Algoritmos , Técnicas Biossensoriais/métodos , Glicemia , Automonitorização da Glicemia , Colorimetria/métodos , Diabetes Mellitus/diagnóstico , Glucose , Humanos
7.
Exp Neurobiol ; 31(3): 131-146, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35786637

RESUMO

Optical neuroimaging provides an effective neuroscience tool for multi-scale investigation of the neural structures and functions, ranging from molecular, cellular activities to the inter-regional connectivity assessment. Amongst experimental preparations, the implementation of an artificial window to the central nervous system (CNS) is primarily required for optical visualization of the CNS and associated brain activities through the opaque skin and bone. Either thinning down or removing portions of the skull or spine is necessary for unobstructed long-term in vivo observations, for which types of the cranial and spinal window and applied materials vary depending on the study objectives. As diversely useful, a window can be designed to accommodate other experimental methods such as electrophysiology or optogenetics. Moreover, auxiliary apparatuses would allow the recording in synchrony with behavior of large-scale brain connectivity signals across the CNS, such as olfactory bulb, cerebral cortex, cerebellum, and spinal cord. Such advancements in the cranial and spinal window have resulted in a paradigm shift in neuroscience, enabling in vivo investigation of the brain function and dysfunction at the microscopic, cellular level. This Review addresses the types and classifications of windows used in optical neuroimaging while describing how to perform in vivo studies using rodent models in combination with other experimental modalities during behavioral tests. The cranial and spinal window has enabled longitudinal examination of evolving neural mechanisms via in situ visualization of the brain. We expect transformable and multi-functional cranial and spinal windows to become commonplace in neuroscience laboratories, further facilitating advances in optical neuroimaging systems.

8.
Ocul Surf ; 26: 283-294, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35753666

RESUMO

PURPOSE: Develop a deep learning-based automated method to segment meibomian glands (MG) and eyelids, quantitatively analyze the MG area and MG ratio, estimate the meiboscore, and remove specular reflections from infrared images. METHODS: A total of 1600 meibography images were captured in a clinical setting. 1000 images were precisely annotated with multiple revisions by investigators and graded 6 times by meibomian gland dysfunction (MGD) experts. Two deep learning (DL) models were trained separately to segment areas of the MG and eyelid. Those segmentation were used to estimate MG ratio and meiboscores using a classification-based DL model. A generative adversarial network was implemented to remove specular reflections from original images. RESULTS: The mean ratio of MG calculated by investigator annotation and DL segmentation was consistent 26.23% vs 25.12% in the upper eyelids and 32.34% vs. 32.29% in the lower eyelids, respectively. Our DL model achieved 73.01% accuracy for meiboscore classification on validation set and 59.17% accuracy when tested on images from independent center, compared to 53.44% validation accuracy by MGD experts. The DL-based approach successfully removes reflection from the original MG images without affecting meiboscore grading. CONCLUSIONS: DL with infrared meibography provides a fully automated, fast quantitative evaluation of MG morphology (MG Segmentation, MG area, MG ratio, and meiboscore) which are sufficiently accurate for diagnosing dry eye disease. Also, the DL removes specular reflection from images to be used by ophthalmologists for distraction-free assessment.


Assuntos
Aprendizado Profundo , Síndromes do Olho Seco , Doenças Palpebrais , Disfunção da Glândula Tarsal , Oftalmologistas , Humanos , Glândulas Tarsais/diagnóstico por imagem , Síndromes do Olho Seco/diagnóstico por imagem , Lágrimas , Doenças Palpebrais/diagnóstico por imagem
9.
Nano Lett ; 21(20): 8933-8940, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34415172

RESUMO

Diabetes is a disease condition characterized by a prolonged, high blood glucose level, which may lead to devastating outcomes unless properly managed. Here, we introduce a simple camera-based optical monitoring system (OMS) utilizing the nanoparticle embedded contact lens that produces color changes matching the tear glucose level without any complicated electronic components. Additionally, we propose an image processing algorithm that automatically optimizes the measurement accuracy even in the presence of image blurring, possibly caused by breathing, subtle movements, and eye blinking. As a result, using in vivo mouse models and human tear samples we successfully demonstrated robust correlations across the glucose concentrations measured by three different independent techniques, validating the quantitative efficacy of the proposed OMS. For its methodological simplicity and accessibility, our findings strongly support that the innovation offered by the OMS and processing algorithm would greatly facilitate the glucose monitoring procedure and improve the overall welfare of diabetes patients.


Assuntos
Técnicas Biossensoriais , Lentes de Contato , Nanopartículas , Animais , Glicemia , Automonitorização da Glicemia , Glucose , Humanos , Camundongos
10.
Biomed Opt Express ; 12(4): 2328-2338, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33996232

RESUMO

Open-top light-sheet microscopy (OT-LSM) is a specialized microscopic technique for high throughput cellular imaging of large tissue specimens including optically cleared tissues by having the entire optical setup below the sample stage. Current OT-LSM systems had relatively low axial resolutions by using weakly focused light sheets to cover the imaging field of view (FOV). In this report, open-top axially swept LSM (OTAS-LSM) was developed for high-throughput cellular imaging with improved axial resolution. OTAS-LSM swept a tightly focused excitation light sheet across the imaging FOV using an electro tunable lens (ETL) and collected emission light at the focus of the light sheet with a camera in the rolling shutter mode. OTAS-LSM was developed by using air objective lenses and a liquid prism and it had on-axis optical aberration associated with the mismatch of refractive indices between air and immersion medium. The effects of optical aberration were analyzed by both simulation and experiment, and the image resolutions were under 1.6µm in all directions. The newly developed OTAS-LSM was applied to the imaging of optically cleared mouse brain and small intestine, and it demonstrated the single-cell resolution imaging of neuronal networks. OTAS-LSM might be useful for the high-throughput cellular examination of optically cleared large tissues.

11.
Biomedicines ; 9(2)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33504015

RESUMO

Phototherapy is widely applied to various human diseases. Nanomedicine-based phototherapy can be classified into photodynamic therapy (PDT) and photothermal therapy (PTT). Activated photosensitizer kills the target cells by generating radicals or reactive oxygen species in PDT while generating heat in PTT. Both PDT and PTT have been employed for treating various diseases, from preclinical to randomized controlled clinical trials. However, there are still hurdles to overcome before entering clinical practice. This review provides an overview of nanomedicine-based phototherapy, especially in non-oncologic diseases. Multiple clinical trials were undertaken to prove the therapeutic efficacy of PDT in dermatologic, ophthalmologic, cardiovascular, and dental diseases. Preclinical studies showed the feasibility of PDT in neurologic, gastrointestinal, respiratory, and musculoskeletal diseases. A few clinical studies of PTT were tried in atherosclerosis and dry eye syndrome. Although most studies have shown promising results, there have been limitations in specificity, targeting efficiency, and tissue penetration using phototherapy. Recently, nanomaterials have shown promising results to overcome these limitations. With advanced technology, nanomedicine-based phototherapy holds great potential for broader clinical practice.

12.
J Photochem Photobiol B ; 210: 111959, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32739664

RESUMO

Trigeminal ganglion (TG) neurons play an essential role in the sensory nerves of the face. Damaged TG neurons resulting from the accidental and non-intentional nerve lesions, commonly identified as neuropathic pain, which is known to cause intense pain and sensory abnormalities. For the treatment, surgical methods are conducted when the pharmacological treatment fails to provide satisfactory recovery. However, the process of surgery or drug intake can burden the patient or cause side effects. One of the logical choices of study becomes photobiomodulation (PBM) referred to as therapeutic approaches based on the interactions of visible or near-infrared (NIR) photons with biomolecules inside cells or tissues. In this study, we constructed a PBM illumination setup to stimulate the cultured primary TG neurons and compared the growth morphology between the non-irradiated control group and irradiation group with NIR laser of 808 nm wavelength. In addition, we applied various radiant exposures of 1, 2, and 10 J/cm2 with different pulse frequencies of 1, 10, and 100 Hz. We found that PBM could promote neurite growth of TG neurons, and it works at relatively low energy densities at 1 and 2 J/cm2. The irradiation group in the pulsed wave mode with the frequency of 10 Hz was found to be the most effective when compared to other frequencies. Thus, PBM on TG neurons facilitated neuronal growth in vitro in a dose and frequency-dependent fashion. PBM may provide a potential therapeutic approach to treat damaged peripheral nerves.


Assuntos
Raios Infravermelhos , Animais , Células Cultivadas , Camundongos , Neuritos/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Neurônios/efeitos da radiação , Imagem Óptica , Gânglio Trigeminal/citologia
13.
Sci Rep ; 10(1): 8254, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427894

RESUMO

Glucose level is a primary indicator in the diagnosis and treatment of diabetes mellitus. According to the correlation between glucose concentration in blood and tears, measuring tear glucose can be an alternative to traditional strips test for blood glucose. Thus, measuring tear glucose levels could provide noninvasive monitoring of blood glucose. As a biocompatible biosensor, a nanoparticle embedded contact lens (NECL) is developed which is composed of glucose oxidase and cerium oxide (III). Using spectroscopy, we found the detectable changes in reflection spectrum of contact lenses with respect to the glucose concentration, and developed correlation curve of the reflection spectrum with known glucose level. Furthermore, we assessed tear glucose level and compared blood glucose level with the diabetic mouse model to evaluate this approach. Our algorithm for regular monitoring of glucose using contact lens biosensor may lead to noninvasive monitoring of tear glucose level. NECL may provide simple and noninvasive glucose monitoring based on the spectral changes in contact lens biosensor.


Assuntos
Técnicas Biossensoriais/métodos , Automonitorização da Glicemia/métodos , Lentes de Contato , Diabetes Mellitus/metabolismo , Glucose/análise , Animais , Técnicas Biossensoriais/instrumentação , Automonitorização da Glicemia/instrumentação , Diabetes Mellitus/diagnóstico , Feminino , Glucose/metabolismo , Glucose Oxidase/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/análise , Lágrimas/química
14.
J Biophotonics ; 13(1): e201900197, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31368257

RESUMO

Delineation of brain tumor margins during surgery is critical to maximize tumor removal while preserving normal brain tissue to obtain optimal clinical outcomes. Although various imaging methods have been developed, they have limitations to be used in clinical practice. We developed a high-speed cellular imaging method by using clinically compatible moxifloxacin and confocal microscopy for sensitive brain tumor detection and delineation. Moxifloxacin is a Food and Drug Administration (FDA) approved antibiotic and was used as a cell labeling agent through topical administration. Its strong fluorescence at short visible excitation wavelengths allowed video-rate cellular imaging. Moxifloxacin-based confocal microscopy (MBCM) was characterized in normal mouse brain specimens and visualized their cytoarchitecture clearly. Then, MBCM was applied to both brain tumor murine models and two malignant human brain tumors of glioblastoma and metastatic cancer. MBCM detected tumors in all the specimens by visualizing dense and irregular cell distributions, and tumor margins were easily delineated based on the cytoarchitecture. An image analysis method was developed for automated detection and delineation. MBCM demonstrated sensitive delineation of brain tumors through cytoarchitecture visualization and would have potentials for human applications, such as a surgery-guiding method for tumor removal.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Camundongos , Microscopia Confocal , Moxifloxacina
15.
Sci Rep ; 9(1): 16514, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712610

RESUMO

Platelet aggregation and adhesion are critically involved in both normal hemostasis and thrombosis during vascular injury. Before any surgery, it is important to identify the number of platelets and their functionality to reduce the risk of bleeding; therefore, platelet function testing is a requirement. We introduce a novel evaluation method of assessing platelet function with laser speckle contrast imaging. The speckle decorrelation time (SDT) of the blood flowing through a microfluidic channel chip provides a quantitative measure of platelet aggregation. We compared SDTs of whole blood and platelet-poor blood, i.e., whole blood stripped of its buffy coat region, and found a marked reduction in decorrelation time for platelet-poor blood. The measured SDT of platelet-poor blood was 1.04 ± 0.21 ms, while that of whole blood was 2.64 ± 0.83 ms. To further characterize the sensitivity of our speckle decorrelation time-based platelet function testing (SDT-PFT), we added various agonists involved in platelet aggregation, including adenosine diphosphate (ADP), epinephrine (EPI), and arachidonic acid (AA). In this study, the results show that whole blood with ADP resulted in the largest SDT, followed by whole blood with AA, whole blood with EPI, whole blood without agonist, and platelet-poor blood with or without agonist. These findings show that SDT-PFT has the potential for rapid screening of bleeding disorders and monitoring of anti-platelet therapies with only a small volume of blood.


Assuntos
Plaquetas/fisiologia , Plaquetas/efeitos da radiação , Lasers , Microfluídica , Testes de Função Plaquetária , Algoritmos , Bioengenharia , Humanos , Luz , Microfluídica/instrumentação , Microfluídica/métodos , Modelos Teóricos , Testes de Função Plaquetária/instrumentação , Testes de Função Plaquetária/métodos
16.
PLoS One ; 14(10): e0224036, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31639179

RESUMO

Red blood cells (RBCs) undergo irreversible biochemical and morphological changes during storage, contributing to the hemorheological changes of stored RBCs, which causes deterioration of microvascular perfusion in vivo. In this study, a home-built optofluidic system for laser speckle imaging of flowing stored RBCs through a transparent microfluidic channel was employed. The speckle decorrelation time (SDT) provides a quantitative measure of RBC changes, including aggregation in the microchannel. The SDT and relative light transmission intensity of the stored RBCs were monitored for 42 days. In addition, correlations between the decorrelation time, RBC flow speed through the channel, and relative light transmission intensity were obtained. The SDT of stored RBCs increased as the storage duration increased. The SDTs of the RBCs stored for 21 days did not significantly change. However, for the RBCs stored for over 35 days, the SDT increased significantly from 1.26 ± 0.27 ms to 6.12 ± 1.98 ms. In addition, we measured the relative light transmission intensity and RBC flow speed. As the RBC storage time increased, the relative light transmission intensity increased, whereas the RBC flow speed decreased in the microchannel. The optofluidic laser speckle image decorrelation time provides a quantitative measure of assessing the RBC condition during storage. Laser speckle image decorrelation analysis may serve as a convenient assay to monitor the property changes of stored RBCs.


Assuntos
Preservação de Sangue/métodos , Viscosidade Sanguínea/fisiologia , Deformação Eritrocítica , Eritrócitos/citologia , Processamento de Imagem Assistida por Computador/métodos , Lasers , Controle de Qualidade , Preservação de Sangue/normas , Humanos , Técnicas Analíticas Microfluídicas , Fibras Ópticas , Perfusão
17.
18.
Biomed Eng Lett ; 9(3): 279-291, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31456889

RESUMO

Light sheet microscopy (LSM) is an evolving optical imaging technique with a plane illumination for optical sectioning and volumetric imaging spanning cell biology, embryology, and in vivo live imaging. Here, we focus on emerging biomedical applications of LSM for tissue samples. Decoupling of the light sheet illumination from detection enables high-speed and large field-of-view imaging with minimal photobleaching and phototoxicity. These unique characteristics of the LSM technique can be easily adapted and potentially replace conventional histopathological procedures. In this review, we cover LSM technology from its inception to its most advanced technology; in particular, we highlight the human histopathological imaging applications to demonstrate LSM's rapid diagnostic ability in comparison with conventional histopathological procedures. We anticipate that the LSM technique can become a useful three-dimensional imaging tool for assessing human biopsies in the near future.

19.
Proc Natl Acad Sci U S A ; 116(7): 2662-2671, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30700544

RESUMO

Cooption of the host vasculature is a strategy that some cancers use to sustain tumor progression without-or before-angiogenesis or in response to antiangiogenic therapy. Facilitated by certain growth factors, cooption can mediate tumor infiltration and confer resistance to antiangiogenic drugs. Unfortunately, this mode of tumor progression is difficult to target because the underlying mechanisms are not fully understood. Here, we analyzed the dynamics of vessel cooption during tumor progression and in response to antiangiogenic treatment in gliomas and brain metastases. We followed tumor evolution during escape from antiangiogenic treatment as cancer cells coopted, and apparently mechanically compressed, host vessels. To gain deeper understanding, we developed a mathematical model, which incorporated compression of coopted vessels, resulting in hypoxia and formation of new vessels by angiogenesis. Even if antiangiogenic therapy can block such secondary angiogenesis, the tumor can sustain itself by coopting existing vessels. Hence, tumor progression can only be stopped by combination therapies that judiciously block both angiogenesis and cooption. Furthermore, the model suggests that sequential blockade is likely to be more beneficial than simultaneous blockade.


Assuntos
Neoplasias Encefálicas/irrigação sanguínea , Glioblastoma/irrigação sanguínea , Neovascularização Patológica/patologia , Inibidores da Angiogênese/uso terapêutico , Angiopoietina-2/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Microscopia/métodos , Invasividade Neoplásica , Neovascularização Patológica/prevenção & controle , Oxigênio/metabolismo , Ratos , Reprodutibilidade dos Testes , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Transl Oncol ; 12(2): 226-235, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30419540

RESUMO

BACKGROUND AND STUDY AIM: To develop a molecular imaging endoscopic system that eliminates tissue autofluorescence and distinguishes multiple fluorescent markers specifically on the cancerous lesions. METHODS: Newly developed multi-spectral fluorescence endoscope device has the potential to eliminate signal interference due to autofluorescence and multiplex fluorophores in fluorescent probes. The multiplexing capability of the multi-spectral endoscope device was demonstrated in the phantom studies and multi-spectral imaging with endoscopy and macroscopy was performed to analyze fluorescence signals after administration of fluorescent probe that targets cancer in the colon. Because of the limitations in the clinical application using rigid-type small animal endoscope, we developed a flexible channel insert-type fluorescence endoscope, which was validated on the colonoscopy of dummy and porcine model. RESULTS: We measured multiple fluorescent signals simultaneously, and the fluorescence spectra were unmixed to separate the fluorescent signals of each probe, in which multiple fluorescent probes clearly revealed spectral deconvolution at the specific targeting area in the mouse colon. The positive area of fluorescence signal for each probe over the whole polyp was segmented with analyzing software, and showed distinctive patterns and significantly distinguishable values: 0.46 ±â€¯0.04, 0.39 ±â€¯0.08 and 0.73 ±â€¯0.12 for HMRG, CET-553 and TRA-675 probes, respectively. The spectral unmixing was finally demonstrated in the dummy and porcine model, corroborating the targeted multi-spectral fluorescence imaging of colon dysplasia. CONCLUSION: The multi-spectral endoscopy system may allow endoscopists to clearly identify cancerous lesion that has different patterns of various target expression using multiple fluorescent probes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...