Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 362, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521872

RESUMO

Muscarinic acetylcholine receptor M3 (M3) and its downstream effector Gq/11 are critical drug development targets due to their involvement in physiopathological processes. Although the structure of the M3-miniGq complex was recently published, the lack of information on the intracellular loop 3 (ICL3) of M3 and extensive modification of Gαq impedes the elucidation of the molecular mechanism of M3-Gq coupling under more physiological condition. Here, we describe the molecular mechanism underlying the dynamic interactions between full-length wild-type M3 and Gq using hydrogen-deuterium exchange mass spectrometry and NanoLuc Binary Technology-based cell systems. We propose a detailed analysis of M3-Gq coupling through examination of previously well-defined binding interfaces and neglected regions. Our findings suggest potential binding interfaces between M3 and Gq in pre-assembled and functionally active complexes. Furthermore, M3 ICL3 negatively affected M3-Gq coupling, and the Gαq AHD underwent unique conformational changes during M3-Gq coupling.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Receptores Muscarínicos , Receptores Muscarínicos/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química
2.
Science ; 383(6678): 101-108, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38175886

RESUMO

ß-arrestins (ßarrs) are multifunctional proteins involved in signaling and regulation of seven transmembrane receptors (7TMRs), and their interaction is driven primarily by agonist-induced receptor activation and phosphorylation. Here, we present seven cryo-electron microscopy structures of ßarrs either in the basal state, activated by the muscarinic receptor subtype 2 (M2R) through its third intracellular loop, or activated by the ßarr-biased decoy D6 receptor (D6R). Combined with biochemical, cellular, and biophysical experiments, these structural snapshots allow the visualization of atypical engagement of ßarrs with 7TMRs and also reveal a structural transition in the carboxyl terminus of ßarr2 from a ß strand to an α helix upon activation by D6R. Our study provides previously unanticipated molecular insights into the structural and functional diversity encoded in 7TMR-ßarr complexes with direct implications for exploring novel therapeutic avenues.


Assuntos
Domínios e Motivos de Interação entre Proteínas , Receptores Acoplados a Proteínas G , beta-Arrestinas , beta-Arrestinas/química , Microscopia Crioeletrônica , Receptores Acoplados a Proteínas G/química , Transdução de Sinais , Conformação Proteica em Folha beta , Conformação Proteica em alfa-Hélice , Humanos
3.
Cell Rep ; 42(11): 113361, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37910508

RESUMO

Vascular endothelial growth factor receptor-2 (VEGFR2) plays a key role in maintaining vascular endothelial homeostasis. Here, we show that blood flows determine activation and inactivation of VEGFR2 through selective cysteine modifications. VEGFR2 activation is regulated by reversible oxidation at Cys1206 residue. H2O2-mediated VEGFR2 oxidation is induced by oscillatory flow in vascular endothelial cells through the induction of NADPH oxidase-4 expression. In contrast, laminar flow induces the expression of endothelial nitric oxide synthase and results in the S-nitrosylation of VEGFR2 at Cys1206, which counteracts the oxidative inactivation. The shear stress model study reveals that disturbed blood flow operated by partial ligation in the carotid arteries induces endothelial damage and intimal hyperplasia in control mice but not in knock-in mice harboring the oxidation-resistant mutant (C1206S) of VEGFR2. Thus, our findings reveal that flow-dependent redox regulation of the VEGFR2 kinase is critical for the structural and functional integrity of the arterial endothelium.


Assuntos
Células Endoteliais , Peróxido de Hidrogênio , Animais , Camundongos , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredução , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
Biochem Biophys Res Commun ; 685: 149153, 2023 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-37913692

RESUMO

Heterotrimeric G proteins (G proteins), composed of Gα, Gß, and Gγ subunits, are the major downstream signaling molecules of the G protein-coupled receptors. Upon activation, Gα undergoes conformational changes both in the Ras-like domain (RD) and the α-helical domain (AHD), leading to the dissociation of Gα from Gßγ and subsequent regulation of downstream effector proteins. Gα RD mediate the most of classical functions of Gα. However, the role of Gα AHD is relatively not well elucidated despite its much higher sequence differences between Gα subtypes than those between Gα RD. Here, we isolated AHD from Gαs, Gαi1, and Gαq to provide tools for examining Gα AHD. We investigated the conformational dynamics of the isolated Gα AHD compared to those of the GDP-bound Gα. The results showed higher local conformational dynamics of Gα AHD not only at the domain interfaces but also in regions further away from the domain interfaces. This finding is consistent with the conformation of Gα AHD in the receptor-bound nucleotide-free state. Therefore, the isolated Gα AHD could provide a platform for studying the functions of Gα AHD, such as identification of the Gα AHD-binding proteins.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Transdução de Sinais , Modelos Moleculares , Proteínas Heterotriméricas de Ligação ao GTP/química , Receptores Acoplados a Proteínas G/metabolismo , Nucleotídeos/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(28): e2301934120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399373

RESUMO

E3 ubiquitin ligase Mdm2 facilitates ß-arrestin ubiquitination, leading to the internalization of G protein-coupled receptors (GPCRs). In this process, ß-arrestins bind to Mdm2 and recruit it to the receptor; however, the molecular architecture of the ß-arrestin-Mdm2 complex has not been elucidated yet. Here, we identified the ß-arrestin-binding region (ABR) on Mdm2 and solved the crystal structure of ß-arrestin1 in complex with Mdm2ABR peptide. The acidic residues of Mdm2ABR bind to the positively charged concave side of the ß-arrestin1 N-domain. The C-tail of ß-arrestin1 is still bound to the N-domain, indicating that Mdm2 binds to the inactive state of ß-arrestin1, whereas the phosphorylated C-terminal tail of GPCRs binds to activate ß-arrestins. The overlapped binding site of Mdm2 and GPCR C-tails on ß-arrestin1 suggests that the binding of GPCR C-tails might trigger the release of Mdm2. Moreover, hydrogen/deuterium exchange experiments further show that Mdm2ABR binding to ß-arrestin1 induces the interdomain interface to be more dynamic and uncouples the IP6-induced oligomer of ß-arrestin1. These results show how the E3 ligase, Mdm2, interacts with ß-arrestins to promote the internalization of GPCRs.


Assuntos
Arrestinas , Ubiquitina-Proteína Ligases , beta-Arrestinas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arrestinas/metabolismo , beta-Arrestina 1/metabolismo , Ubiquitinação , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestina 2/metabolismo , Fosforilação
6.
iScience ; 26(5): 106603, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37128611

RESUMO

G proteins are major signaling partners for G protein-coupled receptors (GPCRs). Although stepwise structural changes during GPCR-G protein complex formation and guanosine diphosphate (GDP) release have been reported, no information is available with regard to guanosine triphosphate (GTP) binding. Here, we used a novel Bayesian integrative modeling framework that combines data from hydrogen-deuterium exchange mass spectrometry, tryptophan-induced fluorescence quenching, and metadynamics simulations to derive a kinetic model and atomic-level characterization of stepwise conformational changes incurred by the ß2-adrenergic receptor (ß2AR)-Gs complex after GDP release and GTP binding. Our data suggest rapid GTP binding and GTP-induced dissociation of Gαs from ß2AR and Gßγ, as opposed to a slow closing of the Gαs α-helical domain (AHD). Yeast-two-hybrid screening using Gαs AHD as bait identified melanoma-associated antigen D2 (MAGE D2) as a novel AHD-binding protein, which was also shown to accelerate the GTP-induced closing of the Gαs AHD.

7.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835474

RESUMO

Heterotrimeric guanine nucleotide-binding proteins (G proteins) are among the most important cellular signaling components, especially G protein-coupled receptors (GPCRs). G proteins comprise three subunits, Gα, Gß, and Gγ. Gα is the key subunit, and its structural state regulates the active status of G proteins. Interaction of guanosine diphosphate (GDP) or guanosine triphosphate (GTP) with Gα switches G protein into basal or active states, respectively. Genetic alteration in Gα could be responsible for the development of various diseases due to its critical role in cell signaling. Specifically, loss-of-function mutations of Gαs are associated with parathyroid hormone-resistant syndrome such as inactivating parathyroid hormone/parathyroid hormone-related peptide (PTH/PTHrP) signaling disorders (iPPSDs), whereas gain-of-function mutations of Gαs are associated with McCune-Albright syndrome and tumor development. In the present study, we analyzed the structural and functional implications of natural variants of the Gαs subtype observed in iPPSDs. Although a few tested natural variants did not alter the structure and function of Gαs, others induced drastic conformational changes in Gαs, resulting in improper folding and aggregation of the proteins. Other natural variants induced only mild conformational changes but altered the GDP/GTP exchange kinetics. Therefore, the results shed light on the relationship between natural variants of Gα and iPPSDs.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Hormônio Paratireóideo/metabolismo , Transdução de Sinais , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Humanos , Pseudo-Hipoparatireoidismo/genética , Conformação Proteica
8.
Subcell Biochem ; 99: 271-284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36151379

RESUMO

Heterotrimeric G proteins (G proteins) are essential cellular signaling proteins that mediate extracellular signals to achieve various cellular functions. G-protein-coupled receptors (GPCRs) are the major guanine nucleotide exchange factors (GEFs) that induce G proteins to release guanosine diphosphate and rapidly bind to guanosine triphosphate, resulting in G protein activation. G proteins undergo dynamic conformational changes during the activation/inactivation process, and the precise structural mechanism of GPCR-mediated G protein activation is of great interest. Over the last decade, a number of GPCR-G protein complex structures have been identified, yet an understanding of the mechanisms underlying allosteric conformational changes during receptor-mediated G protein activation and GPCR-G protein coupling selectivity is only now emerging. This review discusses recent studies on the dynamic conformational changes of G proteins and provides insight into the structural mechanism of GPCR-mediated G protein activation.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Transdução de Sinais , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo
9.
Biochem J ; 479(17): 1843-1855, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36000572

RESUMO

Heterotrimeric guanine nucleotide-binding proteins (G proteins) are composed of α, ß, and γ subunits, and Gα has a GDP/GTP-binding pocket. When a guanine nucleotide exchange factor (GEF) interacts with Gα, GDP is released, and GTP interacts to Gα. The GTP-bound activated Gα dissociates from GEF and Gßγ, mediating the induction of various intracellular signaling pathways. Depending on the sequence similarity and cellular function, Gα subunits are subcategorized into four subfamilies: Gαi/o, Gαs, Gαq/11, and Gα12/13. Although the Gαi/o subtype family proteins, Gαi3 and GαoA, share similar sequences and functions, they differ in their GDP/GTP turnover profiles, with GαoA possessing faster rates than Gαi3. The structural factors responsible for these differences remain unknown. In this study, we employed hydrogen/deuterium exchange mass spectrometry and mutational studies to investigate the factors responsible for these functional differences. The Gα subunit consists of a Ras-like domain (RD) and an α-helical domain (AHD). The RD has GTPase activity and receptor-binding and effector-binding regions; however, the function of the AHD has not yet been extensively studied. In this study, the chimeric construct containing the RD of Gαi3 and the AHD of GαoA showed a GDP/GTP turnover profile similar to that of GαoA, suggesting that the AHD is the major regulator of the GDP/GTP turnover profile. Additionally, site-directed mutagenesis revealed the importance of the N-terminal part of αA and αA/αB loops in the AHD for the GDP/GTP exchange. These results suggest that the AHD regulates the nucleotide exchange rate within the Gα subfamily.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Proteínas Heterotriméricas de Ligação ao GTP , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo
11.
J Mol Biol ; 434(7): 167465, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35077767

RESUMO

Arrestin binding to active phosphorylated G protein-coupled receptors terminates G protein coupling and initiates another wave of signaling. Among the effectors that bind directly to receptor-associated arrestins are extracellular signal-regulated kinases 1/2 (ERK1/2), which promote cellular proliferation and survival. Arrestins may also engage ERK1/2 in isolation in a pre- or post-signaling complex that is likely in equilibrium with the full signal initiation complex. Molecular details of these binary complexes remain unknown. Here, we investigate the molecular mechanisms whereby arrestin-2 and arrestin-3 (a.k.a. ß-arrestin1 and ß-arrestin2, respectively) engage ERK1/2 in pairwise interactions. We find that purified arrestin-3 binds ERK2 more avidly than arrestin-2. A combination of biophysical techniques and peptide array analysis demonstrates that the molecular basis in this difference of binding strength is that the two non-visual arrestins bind ERK2 via different parts of the molecule. We propose a structural model of the ERK2-arrestin-3 complex in solution using size-exclusion chromatography coupled to small angle X-ray scattering (SEC-SAXS). This binary complex exhibits conformational heterogeneity. We speculate that this drives the equilibrium either toward the full signaling complex with receptor-bound arrestin at the membrane or toward full dissociation in the cytoplasm. As ERK1/2 regulates cell migration, proliferation, and survival, understanding complexes that relate to its activation could be exploited to control cell fate.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno , beta-Arrestina 1 , beta-Arrestina 2 , Proteína Quinase 1 Ativada por Mitógeno/química , Ligação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X , beta-Arrestina 1/química , beta-Arrestina 2/química
12.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055186

RESUMO

ß-arrestins were initially identified to desensitize and internalize G-protein-coupled receptors (GPCRs). Receptor-bound ß-arrestins also initiate a second wave of signaling by scaffolding mitogen-activated protein kinase (MAPK) signaling components, MAPK kinase kinase, MAPK kinase, and MAPK. In particular, ß-arrestins facilitate ERK1/2 or JNK3 activation by scaffolding signal cascade components such as ERK1/2-MEK1-cRaf or JNK3-MKK4/7-ASK1. Understanding the precise molecular and structural mechanisms of ß-arrestin-mediated MAPK scaffolding assembly would deepen our understanding of GPCR-mediated MAPK activation and provide clues for the selective regulation of the MAPK signaling cascade for therapeutic purposes. Over the last decade, numerous research groups have attempted to understand the molecular and structural mechanisms of ß-arrestin-mediated MAPK scaffolding assembly. Although not providing the complete mechanism, these efforts suggest potential binding interfaces between ß-arrestins and MAPK signaling components and the mechanism for MAPK signal amplification by ß-arrestin-mediated scaffolding. This review summarizes recent developments of cellular and molecular works on the scaffolding mechanism of ß-arrestin for MAPK signaling cascade.


Assuntos
Sistema de Sinalização das MAP Quinases , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas/metabolismo , Animais , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Receptores Acoplados a Proteínas G/química , beta-Arrestinas/química
13.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34507982

RESUMO

Arrestins were initially identified for their role in homologous desensitization and internalization of G protein-coupled receptors. Receptor-bound arrestins also initiate signaling by interacting with other signaling proteins. Arrestins scaffold MAPK signaling cascades, MAPK kinase kinase (MAP3K), MAPK kinase (MAP2K), and MAPK. In particular, arrestins facilitate ERK1/2 activation by scaffolding ERK1/2 (MAPK), MEK1 (MAP2K), and Raf (MAPK3). However, the structural mechanism underlying this scaffolding remains unknown. Here, we investigated the mechanism of arrestin-2 scaffolding of cRaf, MEK1, and ERK2 using hydrogen/deuterium exchange-mass spectrometry, tryptophan-induced bimane fluorescence quenching, and NMR. We found that basal and active arrestin-2 interacted with cRaf, while only active arrestin-2 interacted with MEK1 and ERK2. The ATP binding status of MEK1 or ERK2 affected arrestin-2 binding; ATP-bound MEK1 interacted with arrestin-2, whereas only empty ERK2 bound arrestin-2. Analysis of the binding interfaces suggested that the relative positions of cRaf, MEK1, and ERK2 on arrestin-2 likely facilitate sequential phosphorylation in the signal transduction cascade.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , beta-Arrestina 1/metabolismo , Animais , Arrestinas/metabolismo , Células COS , Chlorocebus aethiops , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Espectrometria de Massas/métodos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases , Proteínas/metabolismo , Ratos , Transdução de Sinais , beta-Arrestina 2/metabolismo , beta-Arrestinas/metabolismo
14.
Curr Opin Struct Biol ; 69: 117-123, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33975155

RESUMO

The precise structural mechanism of G protein-coupled receptor (GPCR)-G protein coupling has been of significant research interest because it provides fundamental knowledge on cellular signaling and valuable information for GPCR-targeted drug development. Over the last decade, several GPCR-G protein complex structures have been identified. However, these structures are mere snapshots of guanosine diphosphate (GDP)-released stable GPCR-G protein complexes, which have limited the understanding of the allosteric conformational transition during receptor binding to GDP release and the GPCR-G protein coupling selectivity. Recently, deeper insights into the mechanism underlying stepwise conformational changes during GPCR-G protein coupling were obtained using hydrogen/deuterium exchange mass spectrometry, hydroxyl radical footprinting-mass spectrometry, X-ray crystallography, cryoelectron microscopy, and molecular dynamics simulation techniques. This review summarizes these recent developments.


Assuntos
Proteínas de Ligação ao GTP , Receptores Acoplados a Proteínas G , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas de Ligação ao GTP/metabolismo , Ligação Proteica , Conformação Proteica , Receptores Acoplados a Proteínas G/metabolismo
15.
Biomol Ther (Seoul) ; 29(5): 527-535, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33833136

RESUMO

Sclerostin (SOST), a regulator of bone formation in osteocytes, inhibits the canonical Wnt signaling by interacting with low-density lipoprotein receptor-related protein 5/6 (LRP5/6) to prevent Wnt binding. Loss-of-function mutations of the SOST gene caused massive bone outgrowth and SOST-null mouse exhibited a high bone density phenotype. Therefore, SOST has been suggested as a promising therapeutic target for osteoporosis. A few previous studies with X-ray crystallography identified the binding interfaces between LRP6 and SOST, but there are limitations in these studies as they used truncated SOST protein or SOST peptide. Here, we analyzed the conformational dynamics of SOST-LRP6 E1E2 complex using hydrogen/deuterium exchange mass spectrometry (HDX-MS). We examined the effect of the C-terminal tail of SOST on LRP6 conformation upon complex formation. HDXMS analysis suggested a new potential binding interface for the C-terminal region of SOST that was missing from the previous crystal structure of the SOST-LRP6 E1E2 complex.

16.
Sci Rep ; 11(1): 7858, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846507

RESUMO

G protein-coupled receptors (GPCRs) regulate diverse physiological events, which makes them as the major targets for many approved drugs. G proteins are downstream molecules that receive signals from GPCRs and trigger cell responses. The GPCR-G protein selectivity mechanism on how they properly and timely interact is still unclear. Here, we analyzed model GPCRs (i.e. HTR, DAR) and Gα proteins with a coevolutionary tool, statistical coupling analysis. The results suggested that 5-hydroxytryptamine receptors and dopamine receptors have common conserved and coevolved residues. The Gα protein also have conserved and coevolved residues. These coevolved residues were implicated in the molecular functions of the analyzed proteins. We also found specific coevolving pairs related to the selectivity between GPCR and G protein were identified. We propose that these results would contribute to better understandings of not only the functional residues of GPCRs and Gα proteins but also GPCR-G protein selectivity mechanisms.


Assuntos
Coevolução Biológica , Evolução Molecular , Proteínas de Ligação ao GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Transdução de Sinais
17.
J Struct Biol ; 213(1): 107694, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33418033

RESUMO

Heterotrimeric guanine nucleotide-binding proteins (G proteins) are composed of α, ß, and γ subunits. Gα switches between guanosine diphosphate (GDP)-bound inactive and guanosine triphosphate (GTP)-bound active states, and Gßγ interacts with the GDP-bound state. The GDP-binding regions are composed of two sites: the phosphate-binding and guanine-binding regions. The turnover of GDP and GTP is induced by guanine nucleotide-exchange factors (GEFs), including G protein-coupled receptors (GPCRs), Ric8A, and GIV/Girdin. However, the key structural factors for stabilizing the GDP-bound state of G proteins and the direct structural event for GDP release remain unclear. In this study, we investigated structural factors affecting GDP release by introducing point mutations in selected, conserved residues in Gαi3. We examined the effects of these mutations on the GDP/GTP turnover rate and the overall conformation of Gαi3 as well as the binding free energy between Gαi3 and GDP. We found that dynamic changes in the phosphate-binding regions are an immediate factor for the release of GDP.


Assuntos
Proteínas de Ligação ao GTP/química , Guanosina Difosfato/química , Sítios de Ligação/fisiologia , Fatores de Troca do Nucleotídeo Guanina/química , Guanosina Trifosfato/química , Ligação Proteica/fisiologia , Conformação Proteica
18.
Mol Cell ; 81(2): 323-339.e11, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33321095

RESUMO

The phosphorylation of G protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) facilitates arrestin binding and receptor desensitization. Although this process can be regulated by Ca2+-binding proteins such as calmodulin (CaM) and recoverin, the molecular mechanisms are poorly understood. Here, we report structural, computational, and biochemical analysis of a CaM complex with GRK5, revealing how CaM shapes GRK5 response to calcium. The CaM N and C domains bind independently to two helical regions at the GRK5 N and C termini to inhibit GPCR phosphorylation, though only the C domain interaction disrupts GRK5 membrane association, thereby facilitating cytoplasmic translocation. The CaM N domain strongly activates GRK5 via ordering of the amphipathic αN-helix of GRK5 and allosteric disruption of kinase-RH domain interaction for phosphorylation of cytoplasmic GRK5 substrates. These results provide a framework for understanding how two functional effects, GRK5 activation and localization, can cooperate under control of CaM for selective substrate targeting by GRK5.


Assuntos
Cálcio/metabolismo , Calmodulina/química , Quinase 5 de Receptor Acoplado a Proteína G/química , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Sítios de Ligação , Calmodulina/genética , Calmodulina/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Quinase 5 de Receptor Acoplado a Proteína G/genética , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Cinética , Simulação de Dinâmica Molecular , Fosforilação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Células Sf9 , Spodoptera , Especificidade por Substrato , Termodinâmica
19.
Protein Pept Lett ; 28(5): 481-488, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33143608

RESUMO

BACKGROUND: Activation of mitogen-activated protein kinases (MAPKs) is regulated by a phosphorylation cascade comprising three kinases, MAPK kinase kinase (MAP3K), MAPK kinase (MAP2K), and MAPK. MAP2K1 and MAPK2K2, also known as MEK1 and MEK2, activate ERK1 and ERK2. The structure of the MAPK signaling cascade has been studied, but high-resolution structural studies of MAP2Ks have often focused on kinase domains or docking sites, but not on full-length proteins. OBJECTIVE: To understand the conformational dynamics of MEK1. METHODS: Full-length MEK1 was purified from Escherichia coli (BL21), and its conformational dynamics were analyzed using hydrogen/deuterium exchange mass spectrometry (HDX-MS). The effects of ATP binding were examined by co-incubating MEK1 and adenylyl-imidodiphosphate (AMP- PNP), a non-hydrolysable ATP analog. RESULTS: MEK1 exhibited mixed EX1/EX2 HDX kinetics within the N-terminal tail through ß1, αI, and the C-terminal helix. AMP-PNP binding was found to reduce conformational dynamics within the glycine-rich loop and regions near the DFG motif, along with the activation lip. CONCLUSION: We report for the first time that MEK1 has regions that slowly change its folded and unfolded states (mixed EX1/EX2 kinetics) and also report the conformational effects of ATP-binding to MEK1.


Assuntos
Adenilil Imidodifosfato/química , Espectrometria de Massa com Troca Hidrogênio-Deutério , MAP Quinase Quinase 1/química , Humanos , Cinética , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Recombinantes
20.
Arch Pharm Res ; 43(9): 890-899, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32803684

RESUMO

G protein-coupled receptors (GPCRs) belong to a major receptor family and regulate important physiological and pathological functions. Upon agonist activation, GPCRs couple to G proteins and induce the activation of G protein-dependent signaling pathways. The agonist-activated GPCRs are also phosphorylated by G protein-coupled receptor kinases (GRKs), which promote their interaction with arrestins. Arrestin binding induces desensitization (i.e., inability to couple to G proteins) and/or internalization of GPCRs. Arrestins not only desensitize and/or internalize GPCRs but also mediate other downstream signals such as mitogen-activated protein kinases. G protein-mediated signaling and arrestin-mediated signaling often result in different functional outcomes, and therefore, it has been suggested that signaling-selective regulation of GPCRs could lead to the development of more effective treatments with fewer side effects. Thus, studies have attempted to develop functionally biased (i.e., signaling-selective) GPCR-targeting drugs. To this end, it is important to elucidate the structural mechanism underlying functionally biased GPCR signaling, which includes understanding the structural mechanism underlying the GPCR-arrestin interaction. This review aims discuss the structural aspects of the GPCR-arrestin interaction, focusing on the differences between reported GPCR-arrestin complex structures.


Assuntos
Arrestinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Arrestinas/ultraestrutura , Cristalografia por Raios X , Quinases de Receptores Acoplados a Proteína G/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...