Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(10): 2521-2535.e21, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38697107

RESUMO

Cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Here, we create "onion-like" multi-lamellar RNA lipid particle aggregates (LPAs) to substantially enhance the payload packaging and immunogenicity of tumor mRNA antigens. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for Toll-like receptor engagement in immune cells, systemically administered RNA-LPAs activate RIG-I in stromal cells, eliciting massive cytokine/chemokine response and dendritic cell/lymphocyte trafficking that provokes cancer immunogenicity and mediates rejection of both early- and late-stage murine tumor models. In client-owned canines with terminal gliomas, RNA-LPAs improved survivorship and reprogrammed the TME, which became "hot" within days of a single infusion. In a first-in-human trial, RNA-LPAs elicited rapid cytokine/chemokine release, immune activation/trafficking, tissue-confirmed pseudoprogression, and glioma-specific immune responses in glioblastoma patients. These data support RNA-LPAs as a new technology that simultaneously reprograms the TME while eliciting rapid and enduring cancer immunotherapy.


Assuntos
Imunoterapia , Microambiente Tumoral , Animais , Imunoterapia/métodos , Camundongos , Cães , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Citocinas/metabolismo , Glioblastoma/terapia , Glioblastoma/imunologia , Camundongos Endogâmicos C57BL , Feminino , Glioma/terapia , Glioma/imunologia , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA/metabolismo , RNA/uso terapêutico , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia
2.
Cell Syst ; 15(2): 166-179.e7, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38335954

RESUMO

Protein clustering plays numerous roles in cell physiology and disease. However, protein oligomers can be difficult to detect because they are often too small to appear as puncta in conventional fluorescence microscopy. Here, we describe a fluorescent reporter strategy that detects protein clusters with high sensitivity called CluMPS (clusters magnified by phase separation). A CluMPS reporter detects and visually amplifies even small clusters of a binding partner, generating large, quantifiable fluorescence condensates. We use computational modeling and optogenetic clustering to demonstrate that CluMPS can detect small oligomers and behaves rationally according to key system parameters. CluMPS detected small aggregates of pathological proteins where the corresponding GFP fusions appeared diffuse. CluMPS also detected and tracked clusters of unmodified and tagged endogenous proteins, and orthogonal CluMPS probes could be multiplexed in cells. CluMPS provides a powerful yet straightforward approach to observe higher-order protein assembly in its native cellular context. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Fenômenos Fisiológicos Celulares , Proteínas , Microscopia de Fluorescência
3.
Int J Mol Sci ; 24(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37569866

RESUMO

Biomechanical forces are of fundamental importance in biology, diseases, and medicine. Mechanobiology is an emerging interdisciplinary field that studies how biological mechanisms are regulated by biomechanical forces and how physical principles can be leveraged to innovate new therapeutic strategies. This article reviews state-of-the-art mechanobiology knowledge about the yes-associated protein (YAP), a key mechanosensitive protein, and its roles in the development of drug resistance in human cancer. Specifically, the article discusses three topics: how YAP is mechanically regulated in living cells; the molecular mechanobiology mechanisms by which YAP, along with other functional pathways, influences drug resistance of cancer cells (particularly lung cancer cells); and finally, how the mechanical regulation of YAP can influence drug resistance and vice versa. By integrating these topics, we present a unified framework that has the potential to bring theoretical insights into the design of novel mechanomedicines and advance next-generation cancer therapies to suppress tumor progression and metastasis.


Assuntos
Neoplasias Pulmonares , Fatores de Transcrição , Humanos , Fenômenos Biomecânicos , Fatores de Transcrição/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Resistencia a Medicamentos Antineoplásicos
4.
medRxiv ; 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36993772

RESUMO

Messenger RNA (mRNA) has emerged as a remarkable tool for COVID-19 prevention but its use for induction of therapeutic cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Herein, we develop a facile approach for substantially enhancing immunogenicity of tumor-derived mRNA in lipid-particle (LP) delivery systems. By using mRNA as a molecular bridge with ultrapure liposomes and foregoing helper lipids, we promote the formation of 'onion-like' multi-lamellar RNA-LP aggregates (LPA). Intravenous administration of RNA-LPAs mimics infectious emboli and elicits massive DC/T cell mobilization into lymphoid tissues provoking cancer immunogenicity and mediating rejection of both early and late-stage murine tumor models. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for toll-like receptor engagement, RNA-LPAs stimulate intracellular pathogen recognition receptors (RIG-I) and reprogram the TME thus enabling therapeutic T cell activity. RNA-LPAs were safe in acute/chronic murine GLP toxicology studies and immunologically active in client-owned canines with terminal gliomas. In an early phase first-in-human trial for patients with glioblastoma, we show that RNA-LPAs encoding for tumor-associated antigens elicit rapid induction of pro-inflammatory cytokines, mobilization/activation of monocytes and lymphocytes, and expansion of antigen-specific T cell immunity. These data support the use of RNA-LPAs as novel tools to elicit and sustain immune responses against poorly immunogenic tumors.

5.
J Pathol Inform ; 9: 24, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30034922

RESUMO

BACKGROUND: Implementing a laboratory-developed test sometimes requires incorporating an unconventional device into the laboratory information system (LIS) and customizing an interface to reduce transcription error and improve turnaround time. Such a custom interface is a necessity for complicated high-volume tests such as 25-OH Vitamin D by liquid chromatography-tandem mass spectrometry (LC-MS/MS) when there is no vendor-or LIS-supplied interface available. Here, we describe our work and experience interfacing a API 5000 LC-MS/MS instrument with our newly implemented LIS, Epic Beaker, using a combination of in-house scripting software and a middleware vendor, Data Innovations. MATERIALS AND METHODS: For input interfacing, custom scripting software was developed to transcribe batched order lists generated by Epic into files usable by the instrument software, Analyst®. For output interfacing, results from the LC-MS/MS system were fed to a unidirectional instrument driver made by Data Innovations and selected data were transferred to the LIS. RESULTS: Creation and validation of a new driver by Data Innovations took approximately 6 months. The interface was adopted for 25-OH Vitamin D and testosterone testing during periods of increasing test volume (4.5-fold over 8 years and 1.25-fold over 5 years). The amount of time spent reporting 25-OH Vitamin D results decreased 82% per order resulting in a savings of 1370 technician work hours and the amount of time spent reporting testosterone results decreased 75% per order resulting in a savings of 400 technician work hours. CONCLUSIONS: A mixed model using custom scripting and curated commercial middleware serve as a durable interface solution for laboratory instrumentation such as an LC-MS/MS and are flexible to future changes in instrument software, networking protocols, and the scope of LISs and work area managers.

6.
J Pathol Inform ; 8: 28, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28828199

RESUMO

BACKGROUND: Automated calculations by laboratory information system (LIS) are efficient and accurate ways of providing calculated laboratory test results. Due to the lack of established advanced mathematical functions and equation logic in LIS software, calculations beyond simple arithmetic functions require a tedious workaround. Free and bioavailable testosterone (BT) calculations require a quadratic solver currently unavailable as ready to use the function on most commercial LIS platforms. We aimed to develop a module within the Epic Beaker LIS to enable automatic quadratic equation solving capability and real-time reporting of calculated free and BT values. MATERIALS AND METHODS: We developed and implemented an advanced calculation module from the ground up using existing basic calculation programming functions in the Epic Beaker LIS. A set of calculation variables were created, and mathematical logic and functions were used to link the variables and perform the actual quadratic equation based calculations. Calculations were performed in real-time during result entry events, and calculated results populated the result components in LIS automatically. RESULTS: Free and BT were calculated using instrument measured results of total testosterone, sex hormone binding globulin, and/or serum albumin, by applying equations widely adopted in laboratory medicine for endocrine diseases and disorders. Calculated results in Epic Beaker LIS were then compared and confirmed by manual calculations using Microsoft Excel spreadsheets and scientific calculators to have no discrepancies. CONCLUSIONS: Automated calculations of free and BT were successfully implemented and validated, the first of such implementation for the Epic Beaker LIS platform, eliminating the need of offline manual calculations, potential transcription error, and with improved turnaround time. It may serve as a model to build similarly complex equations when the clinical need arises.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...