Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38734903

RESUMO

Sepsis is a life-threatening process due to organ dysfunction resulting from severe infections. Mesenchymal stromal cells (MSCs) are being investigated as therapy for sepsis, along with conditioning regimens to improve their function. Carbon monoxide (CO) gas, which is cytoprotective at low doses, induces autophagy and is a mediator of inflammation. We evaluated CO-induced autophagy in human(h) MSCs, and its impact on cell function in murine cecal ligation and puncture. Conditioning of hMSCs with CO ex vivo resulted in enhanced survival and bacterial clearance in vivo, and neutrophil phagocytosis of bacteria in vitro. Decreased neutrophil infiltration and less parenchymal cell death in organs were associated with increased macrophage efferocytosis of apoptotic neutrophils, promoting resolution of inflammation. These CO effects were lost when the cells were exposed to autophagy inhibition prior to gas exposure. When assessing paracrine actions of CO-induced autophagy, extracellular vesicles (EVs) were predominantly responsible. CO had no effect on EV production, but altered their miRNA cargo. Increased expression of miR-145-3p and miR-193a-3p by CO was blunted with disruption of autophagy, and inhibitors of these miRNAs led to a loss of neutrophil phagocytosis and macrophage efferocytosis. Collectively, CO-induced autophagy enhanced hMSC function during sepsis via paracrine actions of MSC-derived EVs.

2.
Cell Death Discov ; 10(1): 144, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491062

RESUMO

Particulate matter (PM) is a global environmental hazard, which affects human health through free radical production, cell death induction, and immune responses. PM activates inflammasomes leading to excessive inflammatory responses and induces ferroptosis, a type of cell death. Despite ongoing research on the correlation among PM-induced ferroptosis, immune response, and inflammasomes, the underlying mechanism of this relationship has not been elucidated. In this study, we demonstrated the levels of PM-induced cell death and immune responses in murine macrophages, J774A.1 and RAW264.7, depending on the size and composition of particulate matter. PM2.5, with extraction ions, induced significant levels of cell death and immune responses; it induces lipid peroxidation, iron accumulation, and reactive oxygen species (ROS) production, which characterize ferroptosis. In addition, inflammasome-mediated cell death occurred owing to the excessive activation of inflammatory responses. PM-induced iron accumulation activates ferroptosis and inflammasome formation through ROS production; similar results were observed in vivo. These results suggest that the link between ferroptosis and inflammasome formation induced by PM, especially PM2.5 with extraction ions, is established through the iron-ROS axis. Moreover, this study can effectively facilitate the development of a new therapeutic strategy for PM-induced immune and respiratory diseases.

3.
Antioxidants (Basel) ; 13(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38397749

RESUMO

Inflammation is a natural protective process through which the immune system responds to injury, infection, or irritation. However, hyperinflammation or long-term inflammatory responses can cause various inflammatory diseases. Although idebenone was initially developed for the treatment of cognitive impairment and dementia, it is currently used to treat various diseases. However, its anti-inflammatory effects and regulatory functions in inflammatory diseases are yet to be elucidated. Therefore, this study aimed to investigate the anti-inflammatory effects of idebenone in cecal ligation puncture-induced sepsis and lipopolysaccharide-induced systemic inflammation. Murine models of cecal ligation puncture-induced sepsis and lipopolysaccharide-induced systemic inflammation were generated, followed by treatment with various concentrations of idebenone. Additionally, lipopolysaccharide-stimulated macrophages were treated with idebenone to elucidate its anti-inflammatory effects at the cellular level. Idebenone treatment significantly improved survival rate, protected against tissue damage, and decreased the expression of inflammatory enzymes and cytokines in mice models of sepsis and systemic inflammation. Additionally, idebenone treatment suppressed inflammatory responses in macrophages, inhibited the NF-κB signaling pathway, reduced reactive oxygen species and lipid peroxidation, and normalized the activities of antioxidant enzyme. Idebenone possesses potential therapeutic application as a novel anti-inflammatory agent in systemic inflammatory diseases and sepsis.

4.
Mol Cell Biochem ; 479(4): 963-973, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37266748

RESUMO

Decompensated cardiac hypertrophy is accompanied by impaired mitochondrial homeostasis, whether histone acetylation is involved in this process is yet to be determined. The role of HDAC1-mediated NRF1 histone deacetylation was investigated in transverse aortic constriction (TAC)-induced hypertrophy in rats and phenylephrine (PE)-induced hypertrophic cardiomyocytes. Administration of epigallocatechin-3-gallate (EGCG), an inhibitor of HDAC1, restored cardiac function, decreased heart/body weight and fibrosis, increased the ratio of mtDNA/nDNA and the percentage of LysoTracker+ CMs in TAC, compared with TAC without receiving EGCG. In PE-treated hypertrophic H9C2 cells, EGCG attenuated cell hypertrophy and increased LC3B II+MitoTracker+ puncta, as well as the ratio of mtDNA/nDNA. Interestingly, NRF1 but not PGC-1α expression was decreased in TAC- or PE-induced hypertrophic hearts or cells, respectively, while EGCG upregulated both NRF1 and PGC-1α in vitro. EGCG treatment also increased the interaction between PGC-1α and NRF1. In addition to inhibiting HDAC1 expression, EGCG decreased the binding of HDAC1 and increased the binding of acH3K9 or acH3K14 in the promotor regions of PGC-1α and NRF1. In neonatal rat cardiomyocytes, restored NRF1, TFAM and FUNDC1 were abolished by the overexpression of HDAC1. Collectively, data suggest that NRF1 reduction was averted by EGCG via inhibiting HDAC1-mediated histone deacetylation. Acetylation of NRF1 histone may play a key role in maintaining mitochondrial homeostasis associated with cardiac hypertrophy.


Assuntos
Cardiomegalia , Catequina/análogos & derivados , Histonas , Ratos , Animais , Histonas/metabolismo , Cardiomegalia/metabolismo , DNA Mitocondrial , Homeostase , Miócitos Cardíacos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo
5.
J Psychosom Res ; 173: 111455, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37586292

RESUMO

OBJECTIVE: This study examined (a) whether there are a subgroup of cancer patients experiencing the selected psycho-neurological symptoms as a cluster (depression, cognitive impairment, fatigue, sleep disturbance, and pain); (b) whether demographic and clinical characteristics and pro-inflammatory cytokines (IL-1α, IL-1ß, IL-4, IL-6, TNF-alpha) are associated with subgroup membership; and (c) whether the activity of indolamine-2.3 dioxygenase(IDO) is associated with pro-inflammatory cytokine activity and psycho-neurological symptom cluster experience. METHODS: This was a prospective cohort study where 149 hematologic patients were recruited from a university hospital and 65 healthy volunteers provided control data. Latent profile analyses were conducted to identify subgroups at two time points: the last day of chemotherapy and 1 week after chemotherapy completion. Influencing factors of subgroup membership were examined by logistic regression. RESULTS: A substantial number of patients (33%, 34% at each time point) experienced the selected psycho-neurological symptoms as a cluster. Older age and elevated IL-1α and IL-6 were associated with experiencing the psycho-neurological symptom cluster. IDO activity was higher in the patients experiencing psycho-neurological symptom cluster; and was positively associated with IL-6. Symptom severity, IL-1α, IL-6, and IDO activity were all significantly higher in cancer patients than in the healthy controls. The findings were preserved across time points. CONCLUSIONS: The activation of pro-inflammatory cytokines and their cross-talk with IDO may be a common biological mechanism, underlying a psycho-neurological symptom cluster experience. The novel approaches for symptom assessment and management can be developed by assessing multiple psycho-neurological symptoms as a cluster and by targeting their common biological pathway.


Assuntos
Dioxigenases , Neoplasias Hematológicas , Neoplasias , Humanos , Triptofano/metabolismo , Triptofano/uso terapêutico , Cinurenina/metabolismo , Citocinas , Fator de Necrose Tumoral alfa , Interleucina-6 , Interleucina-4/uso terapêutico , Síndrome , Estudos Prospectivos , Neoplasias/psicologia
6.
Cell Death Dis ; 14(7): 464, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491375

RESUMO

Ferroptosis, a programmed cell death, has been identified and associated with cancer and various other diseases. Ferroptosis is defined as a reactive oxygen species (ROS)-dependent cell death related to iron accumulation and lipid peroxidation, which is different from apoptosis, necrosis, autophagy, and other forms of cell death. However, accumulating evidence has revealed a link between autophagy and ferroptosis at the molecular level and has suggested that autophagy is involved in regulating the accumulation of iron-dependent lipid peroxidation and ROS during ferroptosis. Understanding the roles and pathophysiological processes of autophagy during ferroptosis may provide effective strategies for the treatment of ferroptosis-related diseases. In this review, we summarize the current knowledge regarding the regulatory mechanisms underlying ferroptosis, including iron and lipid metabolism, and its association with the autophagy pathway. In addition, we discuss the contribution of autophagy to ferroptosis and elucidate the role of autophagy as a ferroptosis enhancer during ROS-dependent ferroptosis.


Assuntos
Ferroptose , Ferroptose/genética , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Ferro/metabolismo , Autofagia , Peroxidação de Lipídeos
7.
Autophagy ; 19(7): 2111-2142, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36719671

RESUMO

There are diverse links between macroautophagy/autophagy pathways and unfolded protein response (UPR) pathways under endoplasmic reticulum (ER) stress conditions to restore ER homeostasis. Phosphorylation of EIF2S1/eIF2α is an important mechanism that can regulate all three UPR pathways through transcriptional and translational reprogramming to maintain cellular homeostasis and overcome cellular stresses. In this study, to investigate the roles of EIF2S1 phosphorylation in regulation of autophagy during ER stress, we used EIF2S1 phosphorylation-deficient (A/A) cells in which residue 51 was mutated from serine to alanine. A/A cells exhibited defects in several steps of autophagic processes (such as autophagosome and autolysosome formation) that are regulated by the transcriptional activities of the autophagy master transcription factors TFEB and TFE3 under ER stress conditions. EIF2S1 phosphorylation was required for nuclear translocation of TFEB and TFE3 during ER stress. In addition, EIF2AK3/PERK, PPP3/calcineurin-mediated dephosphorylation of TFEB and TFE3, and YWHA/14-3-3 dissociation were required for their nuclear translocation, but were insufficient to induce their nuclear retention during ER stress. Overexpression of the activated ATF6/ATF6α form, XBP1s, and ATF4 differentially rescued defects of TFEB and TFE3 nuclear translocation in A/A cells during ER stress. Consequently, overexpression of the activated ATF6 or TFEB form more efficiently rescued autophagic defects, although XBP1s and ATF4 also displayed an ability to restore autophagy in A/A cells during ER stress. Our results suggest that EIF2S1 phosphorylation is important for autophagy and UPR pathways, to restore ER homeostasis and reveal how EIF2S1 phosphorylation connects UPR pathways to autophagy.Abbreviations: A/A: EIF2S1 phosphorylation-deficient; ACTB: actin beta; Ad-: adenovirus-; ATF6: activating transcription factor 6; ATZ: SERPINA1/α1-antitrypsin with an E342K (Z) mutation; Baf A1: bafilomycin A1; BSA: bovine serum albumin; CDK4: cyclin dependent kinase 4; CDK6: cyclin dependent kinase 6; CHX: cycloheximide; CLEAR: coordinated lysosomal expression and regulation; Co-IP: coimmunoprecipitation; CTSB: cathepsin B; CTSD: cathepsin D; CTSL: cathepsin L; DAPI: 4',6-diamidino-2-phenylindole dihydrochloride; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; DTT: dithiothreitol; EBSS: Earle's Balanced Salt Solution; EGFP: enhanced green fluorescent protein; EIF2S1/eIF2α: eukaryotic translation initiation factor 2 subunit alpha; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; ERAD: endoplasmic reticulum-associated degradation; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FBS: fetal bovine serum; gRNA: guide RNA; GSK3B/GSK3ß: glycogen synthase kinase 3 beta; HA: hemagglutinin; Hep: immortalized hepatocyte; IF: immunofluorescence; IRES: internal ribosome entry site; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LMB: leptomycin B; LPS: lipopolysaccharide; MAP1LC3A/B/LC3A/B: microtubule associated protein 1 light chain 3 alpha/beta; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEFs: mouse embryonic fibroblasts; MFI: mean fluorescence intensity; MTORC1: mechanistic target of rapamycin kinase complex 1; NES: nuclear export signal; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; OE: overexpression; PBS: phosphate-buffered saline; PLA: proximity ligation assay; PPP3/calcineurin: protein phosphatase 3; PTM: post-translational modification; SDS: sodium dodecyl sulfate; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SEM: standard error of the mean; TEM: transmission electron microscopy; TFE3: transcription factor E3; TFEB: transcription factor EB; TFs: transcription factors; Tg: thapsigargin; Tm: tunicamycin; UPR: unfolded protein response; WB: western blot; WT: wild-type; Xbp1s: spliced Xbp1; XPO1/CRM1: exportin 1.


Assuntos
Endorribonucleases , Proteínas Serina-Treonina Quinases , Animais , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Fosforilação , Endorribonucleases/metabolismo , Fator de Iniciação 2 em Procariotos/metabolismo , Autofagia/genética , Calcineurina/metabolismo , Degradação Associada com o Retículo Endoplasmático , Dodecilsulfato de Sódio/metabolismo , Fibroblastos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Lisossomos/metabolismo
8.
BMB Rep ; 56(2): 96-101, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36476270

RESUMO

Particulate matter is an air pollutant composed of various components, and has adverse effects on the human body. Particulate matter is known to induce cell death by generating an imbalance in the antioxidant system; however, the underlying mechanism has not been elucidated. In the present study, we demonstrated the cytotoxic effects of the size and composition of particulate matter on small intestine cells. We found that particulate matter 2.5 (PM2.5) with extraction ion (EI) components (PM2.5 EI), is more cytotoxic than PM containing only polycyclic aromatic hydrocarbons (PAHs). Additionally, PM-induced cell death is characteristic of ferroptosis, and includes iron accumulation, lipid peroxidation, and reactive oxygen species (ROS) generation. Furthermore, ferroptosis inhibitor as liproxstatin-1 and iron-chelator as deferiprone attenuated cell mortality, lipid peroxidation, iron accumulation, and ROS production after PM2.5 EI treatment in human small intestinal cells. These results suggest that PM2.5 EI may increase ferroptotic-cell death by iron accumulation and ROS generation, and offer a potential therapeutic clue for inflammatory bowel diseases in human small intestinal cells. [BMB Reports 2023; 56(2): 96-101].


Assuntos
Antineoplásicos , Ferroptose , Humanos , Material Particulado , Ferro , Antioxidantes , Espécies Reativas de Oxigênio/metabolismo
9.
BMB Rep ; 55(7): 354-359, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35725011

RESUMO

MitoNEET, a mitochondrial outer membrane protein containing the Asn-Glu-Glu-Thr (NEET) sequence, controls the formation of intermitochondrial junctions and confers autophagy resistance. Moreover, mitoNEET as a mitochondrial substrate undergoes ubiquitination by activated Parkin during the initiation of mitophagy. Therefore, mitoNEET is linked to the regulation of autophagy and mitophagy. Mitophagy is the selective removal of the damaged or unnecessary mitochondria, which is crucial to sustaining mitochondrial quality control. In numerous human diseases, the accumulation of damaged mitochondria by impaired mitophagy has been observed. However, the therapeutic strategy targeting of mitoNEET as a mitophagy-enhancing mediator requires further research. Herein, we confirmed that mitophagy is indeed activated by mitoNEET inhibition. CCCP (carbonyl cyanide m-chlorophenyl hydrazone), which leads to mitochondrial depolarization, induces mitochondrial dysfunction and superoxide production. This, in turn, contributes to the induction of mitophagy; mitoNEET protein levels were initially increased before an increase in LC3-Ⅱ protein following CCCP treatment. Pharmacological inhibition of mitoNEET using mitoNEET Ligand-1 (NL-1) promoted accumulation of Pink1 and Parkin, which are mitophagy-associated proteins, and activation of mitochondria-lysosome crosstalk, in comparison to CCCP alone. Inhibition of mitoNEET using NL-1, or mitoNEET shRNA transfected into RAW264.7 cells, abrogated CCCP-induced ROS and mitochondrial cell death; additionally, it activated the expression of PGC-1α and SOD2, regulators of oxidative metabolism. In particular, the increase in PGC-1α, which is a major regulator of mitochondrial biogenesis, promotes mitochondrial quality control. These results indicated that mitoNEET is a potential therapeutic target in numerous human diseases to enhance mitophagy and protect cells by maintaining a network of healthy mitochondria. [BMB Reports 2022; 55(7): 354-359].


Assuntos
Mitofagia , Proteínas Quinases , Carbonil Cianeto m-Clorofenil Hidrazona/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Humanos , Mitocôndrias/metabolismo , Mitofagia/genética , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
10.
Cell Death Dis ; 13(2): 127, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136051

RESUMO

MitoNEET (mitochondrial protein containing Asn-Glu-Glu-Thr (NEET) sequence) is a 2Fe-2S cluster-containing integral membrane protein that resides in the mitochondrial outer membrane and participates in a redox-sensitive signaling and Fe-S cluster transfer. Thus, mitoNEET is a key regulator of mitochondrial oxidative capacity and iron homeostasis. Moreover, mitochondrial dysfunction and oxidative stress play critical roles in inflammatory diseases such as sepsis. Increased iron levels mediated by mitochondrial dysfunction lead to oxidative damage and generation of reactive oxygen species (ROS). Increasing evidence suggests that targeting mitoNEET to reverse mitochondrial dysfunction deserves further investigation. However, the role of mitoNEET in inflammatory diseases is unknown. Here, we investigated the mechanism of action and function of mitoNEET during lipopolysaccharide (LPS)-induced inflammatory responses in vitro and in vivo. Levels of mitoNEET protein increased during microbial or LPS-induced sepsis. Pharmacological inhibition of mitoNEET using mitoNEET ligand-1 (NL-1) decreased the levels of pro-inflammatory cytokines such as IL-1ß, IL-6, and TNF-α in animal models of sepsis, as well as LPS-induced inflammatory responses by macrophages in vitro. Inhibition of mitoNEET using NL-1 or mitoNEET shRNA abrogated LPS-induced ROS formation and mitochondrial dysfunction. Furthermore, mitochondrial iron accumulation led to generation of LPS-induced ROS, a process blocked by NL-1 or shRNA. Taken together, these data suggest that mitoNEET could be a key therapeutic molecule that targets mitochondrial dysfunction during inflammatory diseases and sepsis.


Assuntos
Proteínas Ferro-Enxofre , Sepse , Animais , Inflamação , Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/toxicidade , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sepse/induzido quimicamente , Sepse/tratamento farmacológico
11.
BMB Rep ; 54(11): 545-550, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34353427

RESUMO

Anisomycin is known to inhibit eukaryotic protein synthesis and has been established as an antibiotic and anticancer drug. However, the molecular targets of anisomycin and its mechanism of action have not been explained in macrophages. Here, we demonstrated the anti-inflammatory effects of anisomycin both in vivo and in vitro. We found that anisomycin decreased the mortality rate of macrophages in cecal ligation and puncture (CLP)- and lipopolysaccharide (LPS)-induced acute sepsis. It also declined the gene expression of proinflammatory mediators such as inducible nitric oxide synthase, tumor necrosis factor-α, and interleukin-1ß as well as the nitric oxide and proinflammatory cytokines production in macrophages subjected to LPS-induced acute sepsis. Furthermore, anisomycin attenuated nuclear factor (NF)-κB activation in LPS-induced macrophages, which correlated with the inhibition of phosphorylation of NF-κBinducing kinase and IκB kinase, phosphorylation and IκBα proteolytic degradation, and NF-κB p65 subunit nuclear translocation. These results suggest that anisomycin prevented acute inflammation by inhibiting NF-κB-related inflammatory gene expression and could be a potential therapeutic candidate for sepsis. [BMB Reports 2021; 54(11): 545-550].


Assuntos
Anisomicina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas I-kappa B/antagonistas & inibidores , Inflamação/prevenção & controle , Lipopolissacarídeos/toxicidade , NF-kappa B/antagonistas & inibidores , Sepse/prevenção & controle , Animais , Feminino , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Sepse/induzido quimicamente , Sepse/metabolismo , Sepse/patologia
12.
J Leukoc Biol ; 110(4): 711-722, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33438259

RESUMO

High mobility group (HMG)A proteins are nonhistone chromatin proteins that bind to the minor groove of DNA, interact with transcriptional machinery, and facilitate DNA-directed nuclear processes. HMGA1 has been shown to regulate genes involved with systemic inflammatory processes. We hypothesized that HMGA1 is important in the function of mesenchymal stromal cells (MSCs), which are known to modulate inflammatory responses due to sepsis. To study this process, we harvested MSCs from transgenic (Tg) mice expressing a dominant-negative (dn) form of HMGA1 in mesenchymal cells. MSCs harvested from Tg mice contained the dnHMGA1 transgene, and transgene expression did not change endogenous HMGA1 levels. Immunophenotyping of the cells, along with trilineage differentiation revealed no striking differences between Tg and wild-type (WT) MSCs. However, Tg MSCs growth was decreased compared with WT MSCs, although Tg MSCs were more resistant to oxidative stress-induced death and expressed less IL-6. Tg MSCs administered after the onset of Escherichia coli-induced sepsis maintained their ability to improve survival when given in a single dose, in contrast with WT MSCs. This survival benefit of Tg MSCs was associated with less tissue cell death, and also a reduction in tissue neutrophil infiltration and expression of neutrophil chemokines. Finally, Tg MSCs promoted bacterial clearance and enhanced neutrophil phagocytosis, in part through their increased expression of stromal cell-derived factor-1 compared with WT MSCs. Taken together, these data demonstrate that expression of dnHMGA1 in MSCs provides a functional advantage of the cells when administered during bacterial sepsis.


Assuntos
Genes Dominantes , Proteína HMGA1a/genética , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Sepse/patologia , Sepse/terapia , Transgenes , Adipócitos/citologia , Animais , Morte Celular , Proliferação de Células , Sobrevivência Celular , Quimiocina CXCL12/biossíntese , Escherichia coli/fisiologia , Proteína HMGA1a/metabolismo , Inflamação/patologia , Interleucina-6/biossíntese , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Estresse Oxidativo , Fagocitose , Sepse/microbiologia
13.
BMB Rep ; 53(5): 284-289, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32317086

RESUMO

Tamoxifen, a nonsteroidal estrogen receptor (ER) antagonist, is used routinely as a chemotherapeutic agent for ER-positive breast cancer. However, it is also causes side effects, including retinotoxicity. The retinal pigment epithelium (RPE) has been recognized as the primary target of tamoxifen-induced retinotoxicity. The RPE plays an essential physiological role in the normal functioning of the retina. Nonetheless, potential therapeutic agents to prevent tamoxifen-induced retinotoxicity in breast cancer patients have not been investigated. Here, we evaluated the action mechanisms of sulfasalazine against tamoxifen- induced RPE cell death. Tamoxifen induced reactive oxygen species (ROS)-mediated autophagic cell death and caspase-1-mediated pyroptosis in RPE cells. However, sulfasalazine reduced tamoxifen-induced total ROS and ROS-mediated autophagic RPE cell death. Also, mRNA levels of tamoxifen-induced pyroptosis-related genes, IL-1ß, NLRP3, and procaspase-1, also decreased in the presence of sulfasalazine in RPE cells. Additionally, the mRNA levels of tamoxifen-induced AMD-related genes, such as complement factor I (CFI), complement factor H (CFH), apolipoprotein E (APOE), apolipoprotein J (APOJ), toll-like receptor 2 (TLR2) and toll-like receptor 4 (TLR4), were downregulated in RPE cells. Together, these data provide novel insight into the therapeutic effects of sulfasalazine against tamoxifen-induced RPE cell death. [BMB Reports 2020; 53(5): 284-289].


Assuntos
Epitélio Pigmentado da Retina/efeitos dos fármacos , Sulfassalazina/farmacologia , Tamoxifeno/antagonistas & inibidores , Morte Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Relação Estrutura-Atividade , Tamoxifeno/farmacologia
14.
Crit Care Med ; 48(5): e409-e417, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32167490

RESUMO

OBJECTIVES: Sepsis results in organ dysfunction caused by a dysregulated host response, in part related to the immune response of a severe infection. Mesenchymal stromal cells are known to modulate the immune response, and expression of stromal cell-derived factor-1 regulates mobilization of neutrophils from the bone marrow. We are investigating the importance of stromal cell-derived factor-1 in mesenchymal stromal cells and its role in promoting neutrophil function after the onset of cecal ligation and puncture-induced sepsis. Stromal cell-derived factor-1 expression was silenced in mesenchymal stromal cells, compared with the control scrambled construct mesenchymal stromal cells. DESIGN: Animal study and cell culture. SETTING: Laboratory investigation. SUBJECTS: BALB/c mice. INTERVENTIONS: Polymicrobial sepsis was induced by cecal ligation and puncture. shSCR mesenchymal stromal cells and shSDF-1 mesenchymal stromal cells were delivered by tail vein injections to septic mice. The mice were assessed for survival, bacterial clearance, and the inflammatory response during sepsis in each of the groups. Mesenchymal stromal cells were also assessed for their ability to promote bacterial phagocytosis by neutrophils. MEASUREMENTS AND MAIN RESULTS: Injection of shSCR mesenchymal stromal cells after the onset of sepsis led to an increase in mouse survival (70%) at 7 days, whereas survival of mice receiving shSDF-1 mesenchymal stromal cells was significantly diminished (33%). The loss of survival benefit in mice receiving shSDF-1 mesenchymal stromal cells was associated with less efficient bacterial clearance compared with shSCR mesenchymal stromal cells. Although shSCR mesenchymal stromal cells, or their conditioned medium, were able to increase neutrophil phagocytosis of bacteria, this effect was significantly blunted with shSDF-1 mesenchymal stromal cells. Assessment of peritoneal inflammation revealed that neutrophils were significantly increased and more immature in septic mice receiving shSDF-1 mesenchymal stromal cells. This response was associated with hypocellularity and increased neutrophil death in the bone marrow of mice receiving shSDF-1 mesenchymal stromal cells. CONCLUSIONS: Expression of stromal cell-derived factor-1 in mesenchymal stromal cells enhances neutrophil function with increased phagocytosis, more efficient clearance of bacteria, and bone marrow protection from depletion of cellular reserves during sepsis.


Assuntos
Quimiocina CXCL12/farmacologia , Células-Tronco Mesenquimais/fisiologia , Sepse/terapia , Animais , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Neutrófilos/metabolismo , Fagocitose/efeitos dos fármacos , Sepse/mortalidade
15.
FEBS J ; 287(10): 2055-2069, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32167239

RESUMO

Endoplasmic reticulum (ER) stress-induced cell death of vascular smooth muscle cells (VSMCs) is extensively involved in atherosclerotic plaque stabilization. We previously reported that nucleotide-binding oligomerization domain protein 2 (NOD2) participated in vascular homeostasis and tissue injury. However, the role and underlying mechanisms of NOD2 remain unknown in ER stress-induced cell death of VSMC during vascular diseases, including advanced atherosclerosis. Here, we report that NOD2 specifically interacted with ER stress sensor activating transcription factor 6 (ATF6) and suppressed the expression of proapoptotic transcription factor CHOP (C/EBP homologous protein) during ER stress. CHOP-positive cells were increased in neointimal lesions after femoral artery injury in NOD2-deficient mice. In particular, a NOD2 ligand, MDP, and overexpression of NOD2 decreased CHOP expression in wild-type VSMCs. NOD2 interacted with an ER stress sensor molecule, ATF6, and acted as a negative regulator for ATF6 activation and its downstream target molecule, CHOP, that regulates ER stress-induced apoptosis. Moreover, NOD2 deficiency promoted disruption of advanced atherosclerotic lesions and CHOP expression in NOD2-/- ApoE-/- mice. Our findings indicate an unsuspected critical role for NOD2 in ER stress-induced cell death.


Assuntos
Fator 6 Ativador da Transcrição/genética , Aterosclerose/genética , Proteína Adaptadora de Sinalização NOD2/genética , Fator de Transcrição CHOP/genética , Animais , Apolipoproteínas E/genética , Apoptose/genética , Aterosclerose/patologia , Morte Celular/genética , Modelos Animais de Doenças , Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/genética , Humanos , Camundongos , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia
16.
FEBS J ; 287(10): 2070-2086, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693298

RESUMO

Malignant metastatic melanoma (MM) is the most lethal of all skin cancers, but detailed mechanisms for regulation of melanoma metastasis are not fully understood. Here, we demonstrated that developmentally regulated GTP-binding protein 2 (DRG2) is required for the growth of primary tumors and for metastasis. DRG2 expression was significantly increased in MM compared with primary melanoma (PM) and dysplastic nevi. A correlation between DRG2 expression and poor disease-specific survival in melanoma patients was also identified. Furthermore, inhibition of DRG2 suppressed the binding of Hypoxia-inducible factor 1α to the VEGF-A promoter region, expression of vascular endothelial growth factor (VEGF)-A, and formation of endothelial cell tubes. In experimental mice, DRG2 depletion inhibited the growth of PM and lung metastases and increased survival. These results identify DRG2 as a critical regulator of VEGF-A expression and of growth of PMs and lung metastases.


Assuntos
Proteínas de Ligação ao GTP/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Pulmonares/genética , Melanoma/genética , Fator A de Crescimento do Endotélio Vascular/genética , Adolescente , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Masculino , Melanoma/patologia , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Pessoa de Meia-Idade , Metástase Neoplásica , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Ligação Proteica/genética , Adulto Jovem
17.
Int J Mol Sci ; 20(23)2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795454

RESUMO

: (1) Background: Age-related macular degeneration (AMD) is closely related with retinal pigment epithelial (RPE) cell dysfunction. Although the exact pathogenesis of AMD remains largely unknown, oxidative stress-induced RPE damage is believed to be one of the primary causes. We investigated the molecular mechanisms of pentraxin 3 (PTX3) expression and its biological functions during oxidative injury. (2) Methods: Using enzyme-linked immunosorbent assays and real-time reverse transcription-polymerase chain reaction, we analyzed mRNA and protein levels of PTX3 in the presence or absence of oxidative stress inducer, sodium iodate (NaIO3), in primary human H-RPE and ARPE-19 cells. Furthermore, we assessed cell death, antioxidant enzyme expression, and AMD-associated gene expression to determine the biological functions of PTX3 under oxidative stress. (3) Results: NaIO3 increased PTX3 expression, in a dose- and time-dependent manner, in H-RPE and ARPE-19 cells. We found phosphorylated Akt, a downstream target of the PI3 kinase pathway, phosphor- mitogen-activated protein kinase kinase 1/2 (ERK), and intracellular reactive oxygen species (ROS) were predominantly induced by NaIO3. NaIO3-induced PTX3 expression was decreased in the presence of phosphoinositide 3 (PI3) kinase inhibitors, ERK inhibitors, and ROS scavengers. Furthermore, NaIO3 enhanced mRNA expression of antioxidant enzymes such as glucose-6-phosphate dehydrogenase (G6PDH), catalase (CAT), and glutathione S-reductase (GSR) in the control shRNA expressing RPE cells, but not in hPTX3 shRNA expressing RPE cells. Interestingly, NaIO3 did not induce mRNA expression of AMD marker genes, such as complement factor I (CFI), complement factor H (CFH), apolipoprotein E (APOE), and toll-like receptor 4 (TLR4) in hPTX3 shRNA expressing RPE cells. 4) Conclusions: These results suggest that PTX3 accelerates RPE cell death and might be involved in AMD development in the presence of oxidative stress.


Assuntos
Proteína C-Reativa/metabolismo , Degeneração Macular/metabolismo , Estresse Oxidativo , Epitélio Pigmentado da Retina/metabolismo , Componente Amiloide P Sérico/metabolismo , Proteína C-Reativa/genética , Morte Celular , Linhagem Celular , Humanos , Sistema de Sinalização das MAP Quinases , Degeneração Macular/genética , Degeneração Macular/patologia , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/patologia , Componente Amiloide P Sérico/genética , Regulação para Cima
18.
Front Immunol ; 10: 2636, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781121

RESUMO

In host defense, it is crucial to maintain the acidity of the macrophage phagosome for effective bacterial clearance. However, the mechanisms governing phagosomal acidification upon exposure to gram-negative bacteria have not been fully elucidated. In this study, we demonstrate that in macrophages exposed to Escherichia coli, the thioredoxin-interacting protein (TXNIP)-associated inflammasome plays a role in pH modulation through the activated caspase-1-mediated inhibition of NADPH oxidase. While there was no difference in early-phase bacterial engulfment between Txnip knockout (KO) macrophages and wild-type (WT) macrophages, Txnip KO macrophages were less efficient at destroying intracellular bacteria in the late phase, and their phagosomes failed to undergo appropriate acidification. These phenomena were associated with reactive oxygen species production and were reversed by treatment with an NADPH oxidase inhibitor or a caspase inhibitor. In line with these results, Txnip KO mice were more susceptible to both intraperitoneally administered E. coli and sepsis induced by cecum ligation and puncture than WT mice. Taken together, this study suggests that the TXNIP-associated inflammasome-caspase-1 axis regulates NADPH oxidase to modulate the pH of the phagosome, controlling bacterial clearance by macrophages.


Assuntos
Proteínas de Transporte/imunologia , Caspase 1/imunologia , Infecções por Escherichia coli/imunologia , Inflamassomos/imunologia , Macrófagos/imunologia , Fagossomos/química , Tiorredoxinas/imunologia , Animais , Ativação Enzimática/imunologia , Escherichia coli/imunologia , Concentração de Íons de Hidrogênio , Macrófagos/química , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/imunologia , Fagossomos/imunologia
19.
Cell Death Dis ; 10(11): 822, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31659150

RESUMO

Ferroptosis is a novel form of programmed cell death in which the accumulation of intracellular iron promotes lipid peroxidation, leading to cell death. Recently, the induction of autophagy has been suggested during ferroptosis. However, this relationship between autophagy and ferroptosis is still controversial and the autophagy-inducing mediator remains unknown. In this study, we confirmed that autophagy is indeed induced by the ferroptosis inducer erastin. Furthermore, we show that autophagy leads to iron-dependent ferroptosis by degradation of ferritin and induction of transferrin receptor 1 (TfR1) expression, using wild-type and autophagy-deficient cells, BECN1+/- and LC3B-/-. Consistently, autophagy deficiency caused depletion of intracellular iron and reduced lipid peroxidation, resulting in cell survival during erastin-induced ferroptosis. We further identified that autophagy was triggered by erastin-induced reactive oxygen species (ROS) in ferroptosis. These data provide evidence that ROS-induced autophagy is a key regulator of ferritin degradation and TfR1 expression during ferroptosis. Our study thus contributes toward our understanding of the ferroptotic processes and also helps resolve some of the controversies associated with this phenomenon.


Assuntos
Antígenos CD/genética , Autofagia/genética , Proteína Beclina-1/genética , Ferroptose/genética , Proteínas Associadas aos Microtúbulos/genética , Receptores da Transferrina/genética , Apoptose/genética , Citoplasma/genética , Citoplasma/metabolismo , Ferroptose/efeitos dos fármacos , Humanos , Ferro/metabolismo , Peroxidação de Lipídeos/genética , Piperazinas/toxicidade , Espécies Reativas de Oxigênio/metabolismo
20.
BMB Rep ; 52(11): 665-670, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31619316

RESUMO

Nucleotide-binding oligomerization domain protein 2 (NOD2), an intracellular pattern recognition receptor, plays important roles in inflammation and cell death. Previously, we have shown that NOD2 is expressed in vascular smooth muscle cells (VSMCs) and that NOD2 deficiency promotes VSMC proliferation, migration, and neointimal formation after vascular injury. However, its role in endoplasmic reticulum (ER) stress-induced cell death in VSMCs remains unclear. Thus, the objective of this study was to evaluate ER stress-induced viability of mouse primary VSMCs. NOD2 deficiency increased ER stress-induced cell death and expression levels of apoptosis mediators (cleaved caspase-3, Bax, and Bak) in VSMCs in the presence of tunicamycin (TM), an ER stress inducer. In contrast, ER stress-induced cell death and expression levels of apoptosis mediators (cleaved caspase-3, Bax, and Bak) were decreased in NOD2-overexpressed VSMCs. We found that the IRE-1α-XBP1 pathway, one of unfolded protein response branches, was decreased in NOD2-deficient VSMCs and reversed in NOD2-overexpressed VSMCs in the presence of TM. Furthermore, NOD2 deficiency reduced the expression of XBP1 target genes such as GRP78, PDI-1, and Herpud1, thus improving cell survival. Taken together, these data suggest that the induction of ER stress through NOD2 expression can protect against TM-induced cell death in VSMCs. These results may contribute to a new paradigm in vascular homeostasis. [BMB Reports 2019; 52(11): 665-670].


Assuntos
Músculo Liso Vascular/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Animais , Apoptose , Morte Celular/fisiologia , Sobrevivência Celular , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/fisiologia , Fibroblastos/metabolismo , Camundongos , Miócitos de Músculo Liso/metabolismo , Neointima , Proteína Adaptadora de Sinalização NOD2/genética , Cultura Primária de Células , Transdução de Sinais , Tunicamicina/farmacologia , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...