Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ArXiv ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38106456

RESUMO

Prior to the onset of vision, neurons in the developing mammalian retina spontaneously fire in correlated activity patterns known as retinal waves. Experimental evidence suggests that retinal waves strongly influence the emergence of sensory representations before visual experience. We aim to model this early stage of functional development by using movies of neurally active developing retinas as pre-training data for neural networks. Specifically, we pre-train a ResNet-18 with an unsupervised contrastive learning objective (SimCLR) on both simulated and experimentally-obtained movies of retinal waves, then evaluate its performance on image classification tasks. We find that pre-training on retinal waves significantly improves performance on tasks that test object invariance to spatial translation, while slightly improving performance on more complex tasks like image classification. Notably, these performance boosts are realized on held-out natural images even though the pre-training procedure does not include any natural image data. We then propose a geometrical explanation for the increase in network performance, namely that the spatiotemporal characteristics of retinal waves facilitate the formation of separable feature representations. In particular, we demonstrate that networks pre-trained on retinal waves are more effective at separating image manifolds than randomly initialized networks, especially for manifolds defined by sets of spatial translations. These findings indicate that the broad spatiotemporal properties of retinal waves prepare networks for higher order feature extraction.

2.
Cell Rep ; 42(10): 113142, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37742193

RESUMO

Hippocampus place cell discharge is temporally unreliable across seconds and days, and place fields are multimodal, suggesting an "ensemble cofiring" spatial coding hypothesis with manifold dynamics that does not require reliable spatial tuning, in contrast to hypotheses based on place field (spatial tuning) stability. We imaged mouse CA1 (cornu ammonis 1) ensembles in two environments across three weeks to evaluate these coding hypotheses. While place fields "remap," being more distinct between than within environments, coactivity relationships generally change less. Decoding location and environment from 1-s ensemble location-specific activity is effective and improves with experience. Decoding environment from cell-pair coactivity relationships is also effective and improves with experience, even after removing place tuning. Discriminating environments from 1-s ensemble coactivity relies crucially on the cells with the most anti-coactive cell-pair relationships because activity is internally organized on a low-dimensional manifold of non-linear coactivity relationships that intermittently reregisters to environments according to the anti-cofiring subpopulation activity.


Assuntos
Hipocampo , Células de Lugar , Camundongos , Animais , Região CA1 Hipocampal
3.
Nat Commun ; 14(1): 5828, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730696

RESUMO

Social learning (SL) through experience with conspecifics can facilitate the acquisition of many behaviors. Thus, when Mongolian gerbils are exposed to a demonstrator performing an auditory discrimination task, their subsequent task acquisition is facilitated, even in the absence of visual cues. Here, we show that transient inactivation of auditory cortex (AC) during exposure caused a significant delay in task acquisition during the subsequent practice phase, suggesting that AC activity is necessary for SL. Moreover, social exposure induced an improvement in AC neuron sensitivity to auditory task cues. The magnitude of neural change during exposure correlated with task acquisition during practice. In contrast, exposure to only auditory task cues led to poorer neurometric and behavioral outcomes. Finally, social information during exposure was encoded in the AC of observer animals. Together, our results suggest that auditory SL is supported by AC neuron plasticity occurring during social exposure and prior to behavioral performance.


Assuntos
Córtex Auditivo , Aprendizado Social , Animais , Órgãos dos Sentidos , Percepção Auditiva , Sinais (Psicologia) , Gerbillinae
4.
J Neurosci ; 43(34): 5989-5995, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612141

RESUMO

The brain is a complex system comprising a myriad of interacting neurons, posing significant challenges in understanding its structure, function, and dynamics. Network science has emerged as a powerful tool for studying such interconnected systems, offering a framework for integrating multiscale data and complexity. To date, network methods have significantly advanced functional imaging studies of the human brain and have facilitated the development of control theory-based applications for directing brain activity. Here, we discuss emerging frontiers for network neuroscience in the brain atlas era, addressing the challenges and opportunities in integrating multiple data streams for understanding the neural transitions from development to healthy function to disease. We underscore the importance of fostering interdisciplinary opportunities through workshops, conferences, and funding initiatives, such as supporting students and postdoctoral fellows with interests in both disciplines. By bringing together the network science and neuroscience communities, we can develop novel network-based methods tailored to neural circuits, paving the way toward a deeper understanding of the brain and its functions, as well as offering new challenges for network science.


Assuntos
Neurociências , Humanos , Encéfalo , Impulso (Psicologia) , Neurônios , Pesquisadores
5.
Phys Rev Lett ; 131(2): 027301, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37505944

RESUMO

Understanding how the statistical and geometric properties of neural activity relate to performance is a key problem in theoretical neuroscience and deep learning. Here, we calculate how correlations between object representations affect the capacity, a measure of linear separability. We show that for spherical object manifolds, introducing correlations between centroids effectively pushes the spheres closer together, while introducing correlations between the axes effectively shrinks their radii, revealing a duality between correlations and geometry with respect to the problem of classification. We then apply our results to accurately estimate the capacity of deep network data.

6.
Trends Cogn Sci ; 27(8): 699-701, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37357063

RESUMO

Johnston and Fusi recently investigated the emergence of disentangled representations when a neural network was trained to perform multiple simultaneous tasks. Such experiments explore the benefits of flexible representations and add to a growing field of research investigating the representational geometry of artificial and biological neural networks.


Assuntos
Redes Neurais de Computação , Humanos , Matemática
7.
ArXiv ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37214134

RESUMO

The brain is a complex system comprising a myriad of interacting elements, posing significant challenges in understanding its structure, function, and dynamics. Network science has emerged as a powerful tool for studying such intricate systems, offering a framework for integrating multiscale data and complexity. Here, we discuss the application of network science in the study of the brain, addressing topics such as network models and metrics, the connectome, and the role of dynamics in neural networks. We explore the challenges and opportunities in integrating multiple data streams for understanding the neural transitions from development to healthy function to disease, and discuss the potential for collaboration between network science and neuroscience communities. We underscore the importance of fostering interdisciplinary opportunities through funding initiatives, workshops, and conferences, as well as supporting students and postdoctoral fellows with interests in both disciplines. By uniting the network science and neuroscience communities, we can develop novel network-based methods tailored to neural circuits, paving the way towards a deeper understanding of the brain and its functions.

8.
Proc Natl Acad Sci U S A ; 120(2): e2212120120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36598952

RESUMO

The process by which sensory evidence contributes to perceptual choices requires an understanding of its transformation into decision variables. Here, we address this issue by evaluating the neural representation of acoustic information in the auditory cortex-recipient parietal cortex, while gerbils either performed a two-alternative forced-choice auditory discrimination task or while they passively listened to identical acoustic stimuli. During task engagement, stimulus identity decoding performance from simultaneously recorded parietal neurons significantly correlated with psychometric sensitivity. In contrast, decoding performance during passive listening was significantly reduced. Principal component and geometric analyses revealed the emergence of low-dimensional encoding of linearly separable manifolds with respect to stimulus identity and decision, but only during task engagement. These findings confirm that the parietal cortex mediates a transition of acoustic representations into decision-related variables. Finally, using a clustering analysis, we identified three functionally distinct subpopulations of neurons that each encoded task-relevant information during separate temporal segments of a trial. Taken together, our findings demonstrate how parietal cortex neurons integrate and transform encoded auditory information to guide sound-driven perceptual decisions.


Assuntos
Córtex Auditivo , Lobo Parietal , Animais , Lobo Parietal/fisiologia , Percepção Auditiva/fisiologia , Córtex Auditivo/fisiologia , Estimulação Acústica , Acústica , Gerbillinae
9.
Curr Opin Neurobiol ; 70: 137-144, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34801787

RESUMO

Advances in experimental neuroscience have transformed our ability to explore the structure and function of neural circuits. At the same time, advances in machine learning have unleashed the remarkable computational power of artificial neural networks (ANNs). While these two fields have different tools and applications, they present a similar challenge: namely, understanding how information is embedded and processed through high-dimensional representations to solve complex tasks. One approach to addressing this challenge is to utilize mathematical and computational tools to analyze the geometry of these high-dimensional representations, i.e., neural population geometry. We review examples of geometrical approaches providing insight into the function of biological and artificial neural networks: representation untangling in perception, a geometric theory of classification capacity, disentanglement, and abstraction in cognitive systems, topological representations underlying cognitive maps, dynamic untangling in motor systems, and a dynamical approach to cognition. Together, these findings illustrate an exciting trend at the intersection of machine learning, neuroscience, and geometry, in which neural population geometry provides a useful population-level mechanistic descriptor underlying task implementation. Importantly, geometric descriptions are applicable across sensory modalities, brain regions, network architectures, and timescales. Thus, neural population geometry has the potential to unify our understanding of structure and function in biological and artificial neural networks, bridging the gap between single neurons, population activities, and behavior.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Encéfalo/fisiologia , Cognição , Neurônios/fisiologia
10.
Nat Commun ; 11(1): 746, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029727

RESUMO

Stimuli are represented in the brain by the collective population responses of sensory neurons, and an object presented under varying conditions gives rise to a collection of neural population responses called an 'object manifold'. Changes in the object representation along a hierarchical sensory system are associated with changes in the geometry of those manifolds, and recent theoretical progress connects this geometry with 'classification capacity', a quantitative measure of the ability to support object classification. Deep neural networks trained on object classification tasks are a natural testbed for the applicability of this relation. We show how classification capacity improves along the hierarchies of deep neural networks with different architectures. We demonstrate that changes in the geometry of the associated object manifolds underlie this improved capacity, and shed light on the functional roles different levels in the hierarchy play to achieve it, through orchestrated reduction of manifolds' radius, dimensionality and inter-manifold correlations.


Assuntos
Modelos Neurológicos , Redes Neurais de Computação , Percepção Visual/fisiologia , Algoritmos , Encéfalo/fisiologia , Aprendizado Profundo , Humanos , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa , Células Receptoras Sensoriais/fisiologia
11.
Neural Comput ; 30(10): 2593-2615, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30148702

RESUMO

We consider the problem of classifying data manifolds where each manifold represents invariances that are parameterized by continuous degrees of freedom. Conventional data augmentation methods rely on sampling large numbers of training examples from these manifolds. Instead, we propose an iterative algorithm, [Formula: see text], based on a cutting plane approach that efficiently solves a quadratic semi-infinite programming problem to find the maximum margin solution. We provide a proof of convergence as well as a polynomial bound on the number of iterations required for a desired tolerance in the objective function. The efficiency and performance of [Formula: see text] are demonstrated in high-dimensional simulations and on image manifolds generated from the ImageNet data set. Our results indicate that [Formula: see text] is able to rapidly learn good classifiers and shows superior generalization performance compared with conventional maximum margin methods using data augmentation methods.

12.
Phys Rev E ; 93(6): 060301, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27415193

RESUMO

Objects are represented in sensory systems by continuous manifolds due to sensitivity of neuronal responses to changes in physical features such as location, orientation, and intensity. What makes certain sensory representations better suited for invariant decoding of objects by downstream networks? We present a theory that characterizes the ability of a linear readout network, the perceptron, to classify objects from variable neural responses. We show how the readout perceptron capacity depends on the dimensionality, size, and shape of the object manifolds in its input neural representation.


Assuntos
Modelos Neurológicos , Redes Neurais de Computação
13.
PLoS One ; 8(9): e75712, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086620

RESUMO

The introduction of chemical inhibitors into living cells at specific times in development is a useful method for investigating the roles of specific proteins or cytoskeletal components in developmental processes. Some embryos, such as those of Caenorhabditis elegans, however, possess a tough eggshell that makes introducing drugs and other molecules into embryonic cells challenging. We have developed a procedure using carbon-reinforced nanopipettes (CRNPs) to deliver molecules into C. elegans embryos with high temporal control. The use of CRNPs allows for cellular manipulation to occur just subsequent to meiosis II with minimal damage to the embryo. We have used our technique to replicate classical experiments using latrunculin A to inhibit microfilaments and assess its effects on early polarity establishment. Our injections of latrunculin A confirm the necessity of microfilaments in establishing anterior-posterior polarity at this early stage, even when microtubules remain intact. Further, we find that latrunculin A treatment does not prevent association of PAR-2 or PAR-6 with the cell cortex. Our experiments demonstrate the application of carbon-reinforced nanopipettes to the study of one temporally-confined developmental event. The use of CRNPs to introduce molecules into the embryo should be applicable to investigations at later developmental stages as well as other cells with tough outer coverings.


Assuntos
Carbono/administração & dosagem , Embrião não Mamífero/efeitos dos fármacos , Injeções/instrumentação , Bibliotecas de Moléculas Pequenas/administração & dosagem , Citoesqueleto de Actina/metabolismo , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Polaridade Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/métodos , Meiose/efeitos dos fármacos , Tiazolidinas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...