Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2779, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555350

RESUMO

Adipose tissue (AT) adapts to overnutrition in a complex process, wherein specialized immune cells remove and replace dysfunctional and stressed adipocytes with new fat cells. Among immune cells recruited to AT, lipid-associated macrophages (LAMs) have emerged as key players in obesity and in diseases involving lipid stress and inflammation. Here, we show that LAMs selectively express transmembrane 4 L six family member 19 (TM4SF19), a lysosomal protein that represses acidification through its interaction with Vacuolar-ATPase. Inactivation of TM4SF19 elevates lysosomal acidification and accelerates the clearance of dying/dead adipocytes in vitro and in vivo. TM4SF19 deletion reduces the LAM accumulation and increases the proportion of restorative macrophages in AT of male mice fed a high-fat diet. Importantly, male mice lacking TM4SF19 adapt to high-fat feeding through adipocyte hyperplasia, rather than hypertrophy. This adaptation significantly improves local and systemic insulin sensitivity, and energy expenditure, offering a potential avenue to combat obesity-related metabolic dysfunction.


Assuntos
Resistência à Insulina , Obesidade , Masculino , Camundongos , Animais , Obesidade/complicações , Obesidade/genética , Tecido Adiposo/metabolismo , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos , Lisossomos/metabolismo , Lipídeos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL
2.
Immune Netw ; 24(1): e2, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38455465

RESUMO

Studies over the last 2 decades have identified IL-17 and IL-21 as key cytokines in the modulation of a wide range of immune responses. IL-17 serves as a critical defender against bacterial and fungal pathogens, while maintaining symbiotic relationships with commensal microbiota. However, alterations in its levels can lead to chronic inflammation and autoimmunity. IL-21, on the other hand, bridges the adaptive and innate immune responses, and its imbalance is implicated in autoimmune diseases and cancer, highlighting its important role in both health and disease. Delving into the intricacies of these cytokines not only opens new avenues for understanding the immune system, but also promises innovative advances in the development of therapeutic strategies for numerous diseases. In this review, we will discuss an updated view of the immunobiology and therapeutic potential of IL-17 and IL-21.

3.
Exp Mol Med ; 56(3): 616-629, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38424193

RESUMO

Innate lymphoid cells (ILCs) play an important role in maintaining tissue homeostasis and various inflammatory responses. ILCs are typically classified into three subsets, as is the case for T-cells. Recent studies have reported that IL-10-producing type 2 ILCs (ILC210s) have an immunoregulatory function dependent on IL-10. However, the surface markers of ILC210s and the role of ILC210s in contact hypersensitivity (CHS) are largely unknown. Our study revealed that splenic ILC210s are extensively included in PD-L1highSca-1+ ILCs and that IL-27 amplifies the development of PD-L1highSca-1+ ILCs and ILC210s. Adoptive transfer of PD-L1highSca-1+ ILCs suppressed oxazolone-induced CHS in an IL-10-dependent manner Taken together, our results demonstrate that ILC210s are critical for the control of CHS and suggest that ILC210s can be used as target cells for the treatment of CHS.


Assuntos
Dermatite de Contato , Interleucina-27 , Antígeno B7-H1 , Imunidade Inata , Interleucina-10 , Linfócitos
4.
Exp Mol Med ; 55(11): 2287-2299, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37907738

RESUMO

CD8 T cells play crucial roles in immune surveillance and defense against infections and cancer. After encountering antigenic stimulation, naïve CD8 T cells differentiate and acquire effector functions, enabling them to eliminate infected or malignant cells. Traditionally, cytotoxic T cells, characterized by their ability to produce effector cytokines and release cytotoxic granules to directly kill target cells, have been recognized as the constituents of the predominant effector T-cell subset. However, emerging evidence suggests distinct subsets of effector CD8 T cells that each exhibit unique effector functions and therapeutic potential. This review highlights recent advancements in our understanding of CD8 T-cell subsets and the contributions of these cells to various disease pathologies. Understanding the diverse roles and functions of effector CD8 T-cell subsets is crucial to discern the complex dynamics of immune responses in different disease settings. Furthermore, the development of immunotherapeutic approaches that specifically target and regulate the function of distinct CD8 T-cell subsets holds great promise for precision medicine.


Assuntos
Linfócitos T CD8-Positivos , Subpopulações de Linfócitos T , Antígenos , Citocinas
6.
Adv Mater ; 35(49): e2303979, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37515819

RESUMO

Conventional approaches to developing therapeutic cancer vaccines that primarily activate tumor-specific T cells via dendritic cells (DCs) often demonstrate limited efficacy due to the suboptimal activation of these T cells. To address this limitation, here a therapeutic cancer nanovaccine is developed that enhances T cell responses by interacting with both DCs and T cells. The nanovaccine is based on a cancer cell membrane nanoparticle (CCM-MPLA) that utilizes monophosphoryl lipid A (MPLA) as an adjuvant. To allow direct interaction between the nanovaccine and tumor-specific T cells, anti-CD28 antibodies (aCD28) are conjugated onto CCM-MPLA, resulting in CCM-MPLA-aCD28. This nanovaccine activates tumor-specific CD8+ T cells in both the presence and absence of DCs. Compared with nanovaccines that interact with either DCs (CCM-MPLA) or T cells (CCM-aCD28), CCM-MPLA-aCD28 induces more potent responses of tumor-specific CD8+ T cells and exhibits a higher antitumor efficacy in tumor-bearing mice. No differences in T cell activation efficiency and therapeutic efficacy are observed between CCM-MPLA and CCM-aCD28. This approach may lead to the development of effective personalized therapeutic cancer vaccines prepared from autologous cancer cells.


Assuntos
Vacinas Anticâncer , Neoplasias , Animais , Camundongos , Linfócitos T CD8-Positivos , Vacinas Anticâncer/uso terapêutico , Células Dendríticas , Neoplasias/patologia , Imunoterapia/métodos
7.
Adv Mater ; 35(36): e2303080, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37249019

RESUMO

To demonstrate potent efficacy, a cancer vaccine needs to activate both innate and adaptive immune cells. Personalized cancer vaccine strategies often require the identification of patient-specific neoantigens; however, the clonal and mutational heterogeneity of cancer cells presents inherent challenges. Here, extracellular nanovesicles derived from alpha-galactosylceramide-conjugated autologous acute myeloid leukemia (AML) cells (ECNV-αGC) are presented as a personalized therapeutic vaccine that activates both innate and adaptive immune responses, bypassing the need to identify patient-specific neoantigens. ECNV-αGC vaccination directly engages with and activates both invariant natural killer T (iNKT) cells and leukemia-specific CD8+ T cells in mice with AML, thereby promoting long-term anti-leukemic immune memory. ECNV-αGC sufficiently serves as an antigen-presenting platform that can directly activate antigen-specific CD8+ T cells even in the absence of dendritic cells, thereby demonstrating a multifaceted cellular mechanism of immune activation. Moreover, ECNV-αGC vaccination results in a significantly lower AML burden and higher percentage of leukemia-free survivors among cytarabine-treated hosts with AML. Human AML-derived ECNV-αGCs activate iNKT cells in both healthy individuals and patients with AML regardless of responsiveness to conventional therapies. Together, autologous AML-derived ECNV-αGCs may be a promising personalized therapeutic vaccine that efficiently establishes AML-specific long-term immunity without requiring the identification of neoantigens.


Assuntos
Vacinas Anticâncer , Leucemia Mieloide Aguda , Células T Matadoras Naturais , Humanos , Animais , Camundongos , Linfócitos T CD8-Positivos , Ativação Linfocitária , Leucemia Mieloide Aguda/terapia
8.
Proc Natl Acad Sci U S A ; 120(9): e2213793120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802434

RESUMO

Liver X receptor (LXR) is a critical regulator of cholesterol homeostasis that inhibits T cell receptor (TCR)-induced proliferation by altering intracellular sterol metabolism. However, the mechanisms by which LXR regulates helper T cell subset differentiation remain unclear. Here, we demonstrate that LXR is a crucial negative regulator of follicular helper T (Tfh) cells in vivo. Both mixed bone marrow chimera and antigen-specific T cell adoptive cotransfer studies show a specific increase in Tfh cells among LXRß-deficient CD4+ T cell population in response to immunization and lymphocytic choriomeningitis mammarenavirus (LCMV) infection. Mechanistically, LXRß-deficient Tfh cells express augmented levels of T cell factor 1 (TCF-1) but comparable levels of Bcl6, CXCR5, and PD-1 in comparison with those of LXRß-sufficient Tfh cells. Loss of LXRß confers inactivation of GSK3ß induced by either AKT/Extracellular signal-regulated kinase (ERK) activation or Wnt/ß-catenin pathway, leading to elevated TCF-1 expression in CD4+ T cells. Conversely, ligation of LXR represses TCF-1 expression and Tfh cell differentiation in both murine and human CD4+ T cells. LXR agonist significantly diminishes Tfh cells and the levels of antigen-specific IgG upon immunization. These findings unveil a cell-intrinsic regulatory function of LXR in Tfh cell differentiation via the GSK3ß-TCF1 pathway, which may serve as a promising target for pharmacological intervention in Tfh-mediated diseases.


Assuntos
Células T Auxiliares Foliculares , Linfócitos T Auxiliares-Indutores , Camundongos , Humanos , Animais , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Centro Germinativo , Fator 1 de Transcrição de Linfócitos T/genética , Diferenciação Celular
9.
J Immunother Cancer ; 11(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36693679

RESUMO

BACKGROUND: Immunological contexture differs across malignancies, and understanding it in the tumor microenvironment (TME) is essential for development of new anticancer agents in order to achieve synergistic effects with anti-programmed cell death protein-1 (PD-1) therapy. TYRO3, AXL, and MERTK receptors are bi-expressed in both cancer and immune cells, and thus emerge as promising targets for therapeutic intervention. Whereas AXL and MERTK have been extensively studied, the role of TYRO3, in the TME, is still undetermined. METHODS: Here, we screened the TYRO3-focused chemical library consisting of 208 compounds and presented a potent and highly selective TYRO3 inhibitor, KRCT87. We explored the role of TYRO3 using mouse engrafting MC38 or 4T1 tumors. We validated the results using flow cytometry, RNA sequencing analysis, gene knockdown or overexpression, ex vivo immune cells isolation from mouse models, immunoblotting and quantitative PCR. Flow cytometry was used for the quantification of cell populations and immunophenotyping of macrophages and T cells. Co-cultures of macrophages and T cells were performed to verify the role of CCN1 in the tumors. RESULTS: TYRO3 blockade boosts antitumor immune responses in both the tumor-draining lymph nodes and tumors in MC38-syngeneic mice models. Moreover, the combination of KRCT87 and anti-PD-1 therapy exerts significant synergistic antitumor effects in anti-PD-1-non-responsive 4T1-syngeneic model. Mechanistically, we demonstrated that inhibition of TYRO3-driven CCN1 secretion fosters macrophages into M1-skewing phenotypes, thereby triggering antitumor T-cell responses. CCN1 overexpression in MC38 tumors diminishes responsiveness to anti-PD-1 therapy. CONCLUSIONS: The activated TYRO3-CCN1 axis in cancer could dampen anti-PD-1 therapy responses. These findings highlight the potential of TYRO3 blockade to improve the clinical outcomes of anti-PD-1 therapy.


Assuntos
Microambiente Tumoral , Camundongos , Animais , c-Mer Tirosina Quinase , Linhagem Celular Tumoral , Modelos Animais de Doenças
10.
Adv Mater ; 35(3): e2207719, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36329674

RESUMO

Alzheimer's disease (AD), the most common cause of dementia, is a complex condition characterized by multiple pathophysiological mechanisms including amyloid-ß (Aß) plaque accumulation and neuroinflammation in the brain. The current immunotherapy approaches, such as anti-Aß monoclonal antibody (mAb) therapy, Aß vaccines, and adoptive regulatory T (Treg) cell transfer, target a single pathophysiological mechanism, which may lead to unsatisfactory therapeutic efficacy. Furthermore, Aß vaccines often induce T helper 1 (Th1) cell-mediated inflammatory responses. Here, a nanovaccine composed of lipid nanoparticles loaded with Aß peptides and rapamycin is developed, which targets multiple pathophysiological mechanisms, exhibits the combined effects of anti-Aß antibody therapy and adoptive Aß-specific Treg cell transfer, and can overcome the limitations of current immunotherapy approaches for AD. The Nanovaccine effectively delivers rapamycin and Aß peptides to dendritic cells, produces both anti-Aß antibodies and Aß-specific Treg cells, removes Aß plaques in the brain, alleviates neuroinflammation, prevents Th1 cell-mediated excessive immune responses, and inhibits cognitive impairment in mice. The nanovaccine shows higher efficacy in cognitive recovery than an Aß vaccine. Unlike anti-Aß mAb therapy and adoptive Treg cell transfer, both of which require complicated and costly manufacturing processes, the nanovaccine is easy-to-prepare and cost-effective. The nanovaccines can represent a novel treatment option for AD.


Assuntos
Doença de Alzheimer , Vacinas , Camundongos , Animais , Linfócitos T Reguladores , Doenças Neuroinflamatórias , Camundongos Transgênicos , Peptídeos beta-Amiloides , Anticorpos Monoclonais , Modelos Animais de Doenças
11.
Exp Mol Med ; 54(8): 1214-1224, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35999454

RESUMO

Allergic inflammation is a T helper 2 (Th2) cell-driven pathophysiological phenomenon, but the mechanism by which the metabolic cascade affects Th2 cell differentiation remains unclear. In this study, we investigated the roles of AMP-activated protein kinase (AMPK) and intracellular energy sensors in Th2 cell differentiation and the pathogenesis of allergic inflammation. Accordingly, T-cell-specific AMPK or Sirtuin 1 (Sirt1)-knockout mice were subjected to allergic inflammation, and their Th2 cell responses were investigated. The results demonstrated that inducing allergic inflammation in AMPK- and Sirt1-knockout mice increased Th2 cell responses and exacerbated allergic phenotypes. Furthermore, treatment with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMPK, ameliorated allergic inflammation in mice. Mechanistically, our findings revealed that AMPK repressed mechanistic target of rapamycin complex 2 (mTORC2), which downregulated the expression of suppressor of cytokine signaling 5 (SOCS5) in CD4+ T cells. In addition, the loss of AMPK signaling reduced SOCS5 expression and increased interleukin-4-STAT6-GATA3 axis-mediated Th2 cell differentiation. Finally, the T-cell-specific deletion of Rictor, a member of mTORC2, in Sirt1T-KO mice led to the reversal of allergic exacerbation to the level in control mice. Overall, our findings suggest that AMPK in CD4+ T cells inhibits the differentiation of Th2 cells by repressing mTORC2 and thus serves as a potential target for Th2 cell-associated diseases.


Assuntos
Proteínas Quinases Ativadas por AMP , Células Th2 , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Inflamação/patologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , Sirtuína 1/genética , Células Th2/patologia
12.
13.
J Allergy Clin Immunol ; 149(4): 1253-1269.e8, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34653517

RESUMO

BACKGROUND: Diesel exhaust particles (DEPs) are the main component of traffic-related air pollution and have been implicated in the pathogenesis and exacerbation of asthma. However, the mechanism by which DEP exposure aggravates asthma symptoms remains unclear. OBJECTIVE: This study aimed to identify a key cellular player of air pollutant-induced asthma exacerbation and development. METHODS: We examined the distribution of innate immune cells in the murine models of asthma induced by house dust mite and DEP. Changes in immune cell profiles caused by DEP exposure were confirmed by flow cytometry and RNA-Seq analysis. The roles of sialic acid-binding, Ig-like lectin F (SiglecF)-positive neutrophils were further evaluated by adoptive transfer experiment and in vitro functional studies. RESULTS: DEP exposure induced a unique population of lung granulocytes that coexpressed Ly6G and SiglecF. These cells differed phenotypically, morphologically, functionally, and transcriptionally from other SiglecF-expressing cells in the lungs. Our findings with murine models suggest that intratracheal challenge with DEPs induces the local release of adenosine triphosphate, which is a damage-associated molecular pattern signal. Adenosine triphosphate promotes the expression of SiglecF on neutrophils, and these SiglecF+ neutrophils worsen type 2 and 3 airway inflammation by producing high levels of cysteinyl leukotrienes and neutrophil extracellular traps. We also found Siglec8- (which corresponds to murine SiglecF) expressing neutrophils, and we found it in patients with asthma-chronic obstructive pulmonary disease overlap. CONCLUSION: The SiglecF+ neutrophil is a novel and critical player in airway inflammation and targeting this population could reverse or ameliorate asthma.


Assuntos
Poluentes Atmosféricos , Asma , Trifosfato de Adenosina/metabolismo , Poluentes Atmosféricos/toxicidade , Animais , Humanos , Inflamação/metabolismo , Pulmão , Camundongos , Neutrófilos/patologia , Emissões de Veículos/toxicidade
14.
Adv Mater ; 34(9): e2106516, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34962660

RESUMO

Despite the clinically proven efficacies of immune checkpoint blockades, including anti-cytotoxic T lymphocyte-associated protein 4 antibody (αCTLA-4), the low response rate and immune-related adverse events (irAEs) in cancer patients represent major drawbacks of the therapy. These drawbacks of αCTLA-4 therapy are mainly due to the suboptimal activation of tumor-specific cytotoxic T lymphocytes (CTLs) and the systemic nonspecific activation of T cells. To overcome such drawbacks, αCTLA-4 is delivered by dendritic cell-derived nanovesicles presenting tumor antigens (DCNV-TAs) that exclusively interact with tumor-specific T cells, leading to selective activation of tumor-specific CTLs. Compared to conventional αCTLA-4 therapy, treatment with αCTLA-4-conjugated DCNV-TAs significantly inhibits tumor growth and reduces irAEs in syngeneic tumor-bearing mice. This study demonstrates that the spatiotemporal presentation of both αCTLA-4 and tumor antigens enables selective activation of tumor-specific T cells and potentiates the antitumor efficacy of αCTLA-4 without inducing systemic irAEs.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Animais , Antígenos de Neoplasias , Humanos , Imunoterapia , Camundongos , Neoplasias/tratamento farmacológico , Linfócitos T Citotóxicos
16.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34663730

RESUMO

GPCR-Gα protein-mediated signal transduction contributes to spatiotemporal interactions between immune cells to fine-tune and facilitate the process of inflammation and host protection. Beyond this, however, how Gα proteins contribute to the helper T cell subset differentiation and adaptive response have been underappreciated. Here, we found that Gα13 signaling in T cells plays a crucial role in inducing follicular helper T (Tfh) cell differentiation in vivo. T cell-specific Gα13-deficient mice have diminished Tfh cell responses in a cell-intrinsic manner in response to immunization, lymphocytic choriomeningitis virus infection, and allergen challenges. Moreover, Gα13-deficient Tfh cells express reduced levels of Bcl-6 and CXCR5 and are functionally impaired in their ability to adhere to and stimulate B cells. Mechanistically, Gα13-deficient Tfh cells harbor defective Rho-ROCK2 activation, and Rho agonist treatment recuperates Tfh cell differentiation and expression of Bcl-6 and CXCR5 in Tfh cells of T cell-specific Gα13-deficient mice. Conversely, ROCK inhibitor treatment hampers Tfh cell differentiation in wild-type mice. These findings unveil a crucial regulatory role of Gα13-Rho-ROCK axis in optimal Tfh cell differentiation and function, which might be a promising target for pharmacologic intervention in vaccine development as well as antibody-mediated immune disorders.


Assuntos
Diferenciação Celular , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Transdução de Sinais , Células T Auxiliares Foliculares/citologia , Animais , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Tecido Linfoide/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Receptores CXCR5/metabolismo , Timo/citologia , Timo/crescimento & desenvolvimento , Timo/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
17.
Cancer Lett ; 520: 38-47, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34224797

RESUMO

Understanding the rationale of combining immunotherapy and other anticancer treatment modalities is of great interest because of interpatient variability in single-agent immunotherapy. Here, we demonstrated that topoisomerase I inhibitors, a class of chemotherapeutic drugs, can alter the tumor immune landscape, corroborating their antitumor effects combined with immunotherapy. We observed that topotecan-conditioned TC-1 tumors were occupied by a vast number of monocytic cells that highly express CD11c, CD64, and costimulatory molecules responsible for the favorable changes in the tumor microenvironment. Ly6C+MHC-II+CD11chiCD64hi cells, referred to as topotecan-induced monocyte-derived dendritic cells (moDCs), proliferate and activate antigen-specific CD8+ T cells to levels equivalent to those of conventional DCs. Phenotypic changes in Ly6C+ cells towards moDCs were similarly induced by exposure to topotecan in vitro, which was more profoundly facilitated in the presence of tumor cells. Notably, anti-M-CSFR reversed the acquisition of DC-like properties of topotecan-induced moDCs, leading to the abolition of the antitumor effect of topotecan combined with a cancer vaccine. In short, topoisomerase I inhibitors generate monocyte-derived antigen-presenting cells in tumors, which could be mediated by M-CSF-M-CSFR signaling.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Imunoterapia , Neoplasias/terapia , Inibidores da Topoisomerase I/farmacologia , Animais , Antígenos Ly/imunologia , Antígeno CD11c/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/farmacologia , Proliferação de Células/genética , Técnicas de Cocultura , Terapia Combinada , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Receptores de IgG/imunologia , Linfócitos T/imunologia , Inibidores da Topoisomerase I/imunologia , Topotecan/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
18.
Small ; 17(32): e2101207, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34216428

RESUMO

Severe cardiac damage following myocardial infarction (MI) causes excessive inflammation, which sustains tissue damage and often induces adverse cardiac remodeling toward cardiac function impairment and heart failure. Timely resolution of post-MI inflammation may prevent cardiac remodeling and development of heart failure. Cell therapy approaches for MI are time-consuming and costly, and have shown marginal efficacy in clinical trials. Here, nanoparticles targeting the immune system to attenuate excessive inflammation in infarcted myocardium are presented. Liposomal nanoparticles loaded with MI antigens and rapamycin (L-Ag/R) enable effective induction of tolerogenic dendritic cells presenting the antigens and subsequent induction of antigen-specific regulatory T cells (Tregs). Impressively, intradermal injection of L-Ag/R into acute MI mice attenuates inflammation in the myocardium by inducing Tregs and an inflammatory-to-reparative macrophage polarization, inhibits adverse cardiac remodeling, and improves cardiac function. Nanoparticle-mediated blocking of excessive inflammation in infarcted myocardium may be an effective intervention to prevent the development of post-MI heart failure.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Nanopartículas , Animais , Modelos Animais de Doenças , Insuficiência Cardíaca/prevenção & controle , Inflamação , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/complicações , Miocárdio
19.
J Lipid Atheroscler ; 10(2): 184-201, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34095011

RESUMO

Dyslipidemia is a major cause of cardiovascular diseases which represent a leading cause of death in humans. Diverse immune cells are known to be involved in the pathogenesis of cardiovascular diseases such as atherosclerosis. Conversely, dyslipidemia is known to be tightly associated with immune disorders in humans, as evidenced by a higher incidence of atherosclerosis in patients with autoimmune diseases including psoriasis, rheumatoid arthritis, and systemic lupus erythematosus. Given that the dyslipidemia-related autoimmune diseases are caused by autoreactive T cells and B cells, dyslipidemia seems to directly or indirectly regulate the adaptive immunity. Indeed, accumulating evidence has unveiled that proatherogenic factors can impact the differentiation and function of CD4+ T cells, CD8+ T cells, and B cells. This review discusses an updated overview on the regulation of adaptive immunity by dyslipidemia and proposes a potential therapeutic strategy for immune disorders by targeting lipid metabolism.

20.
J Immunother Cancer ; 9(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34083422

RESUMO

BACKGROUND: Multiple types of immune cells producing IL-17 are found in the tumor microenvironment. However, their roles in tumor progression and exhaustion of CD8+ tumor-infiltrating lymphocytes (TILs) remain unclear. METHODS: To determine the role of type 17 immunity in tumor, we investigated the growth of B16F10 melanoma and the exhaustion of CD8+ TILs in Il17a-/- mice, Il17aCreR26DTA mice, RORγt inhibitor-treated mice, or their respective control mice. Adoptive transfer of tumor-specific IL-17-producing T cells was performed in B16F10-bearing congenic mice. Anti-CD4 or anti-Ly6G antibodies were used to deplete CD4+ T cells or CD11b+Gr-1hi myeloid cells in vivo, respectively. Correlation between type 17 immunity and T cell exhaustion in human cancer was evaluated by interrogating TCGA dataset. RESULTS: Depletion of CD4+ T cells promotes the exhaustion of CD8+ T cells with a concomitant increase in IL-17-producing CD8+ T (Tc17) cells in the tumor. Unlike IFN-γ-producing CD8+ T (Tc1) cells, tumor-infiltrating Tc17 cells exhibit CD103+KLRG1-IL-7Rαhi tissue resident memory-like phenotypes and are poorly cytolytic. Adoptive transfer of IL-17-producing tumor-specific T cells increases, while depletion of IL-17-producing cells decreases, the frequency of PD-1hiTim3+TOX+ terminally exhausted CD8+ T cells in the tumor. Blockade of IL-17 or RORγt pathway inhibits exhaustion of CD8+ T cells and also delays tumor growth in vivo. Consistent with these results, human TCGA analyses reveal a strong positive correlation between type 17 and CD8+ T cell exhaustion signature gene sets in multiple cancers. CONCLUSION: IL-17-producing cells promote terminal exhaustion of CD8+ T cells and tumor progression in vivo, which can be reversed by blockade of IL-17 or RORγt pathway. These findings unveil a novel role for IL-17-producing cells as tumor-promoting cells facilitating CD8+ T cell exhaustion, and propose type 17 immunity as a promising target for cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Deleção de Genes , Interleucina-17/genética , Melanoma Experimental/terapia , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/transplante , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Camundongos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...