Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Nanoscale ; 16(28): 13551-13561, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38949653

RESUMO

Possessing excellent electronic properties and high chemical stability, semiconducting n-type two-dimensional (2D) tin dioxide (SnO2) nanosheets have been featured in sensing and electrocatalysis applications recently. Derived from non-layered crystal structures, 2D SnO2 has abundant unsaturated dangling bonds existing at the surface, providing interfacial activity. How the surface chemistry alters the electronic properties of 2D SnO2 nanomaterials remains unexplored. In this study, we synthesised ultra-thin 2D SnO2 nanosheets using a liquid metal (LM) touch printing technique and investigated experimentally and theoretically how the interactions of organic solvents composed of alkyl and hydroxyl groups with the surface of LM-derived 2D SnO2 modulate the electronic properties. It was found that alkane solvents can physically absorb onto the SnO2 surface with no impact on the material conductivity. Alcohol-based solvents on the other hand interact with the SnO2 surface via chemical absorptions primarily, in which oxygen atoms of hydroxyl groups in the alcohols form bonds with the surface atoms of SnO2. The binding stability is determined by the length and configuration of the hydrocarbon chain in alcohols. As representative long-chain alcohols, 1-octanol and 1-pentanol attach onto the SnO2 surface strongly, lowering the binding energy of Sn4+ and reducing the electron transfer ability of SnO2 nanosheets. Consequently, the electronic properties, i.e. conductivity and electronic mobility of SnO2 nanosheet-based electronic devices are decreased significantly.

2.
Adv Mater ; 36(30): e2403885, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38739417

RESUMO

Low-melting liquid metals are emerging as a new group of highly functional solvents due to their capability to dissolve and alloy various metals in their elemental state to form solutions as well as colloidal systems. Furthermore, these liquid metals can facilitate and catalyze multiple unique chemical reactions. Despite the intriguing science behind liquid metals and alloys, very little is known about their fundamental structures in the nanometric regime. To bridge this gap, this work employs small angle neutron scattering and molecular dynamics simulations, revealing that the most commonly used liquid metal solvents, EGaIn and Galinstan, are surprisingly structured with the formation of clusters ranging from 157 to 15.7 Å. Conversely, noneutectic liquid metal alloys of GaSn or GaIn at low solute concentrations of 1, 2, and 5 wt%, as well as pure Ga, do not exhibit these structures. Importantly, the eutectic alloys retain their structure even at elevated temperatures of 60 and 90 °C, highlighting that they are not just simple homogeneous fluids consisting of individual atoms. Understanding the complex soft structure of liquid alloys will assist in comprehending complex phenomena occurring within these fluids and contribute to deriving reaction mechanisms in the realm of synthesis and liquid metal-based catalysis.

3.
Nano Lett ; 24(6): 1944-1950, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38305174

RESUMO

Metal nanoparticles can photosensitize two-dimensional metal oxides, facilitating their electrical connection to devices and enhancing their abilities in catalysis and sensing. In this study, we investigated how individual silver nanoparticles interact with two-dimensional tin oxide and antimony-doped indium oxide using electron energy loss spectroscopy (EELS). The measurement of the spectral line width of the longitudinal plasmon resonance of the nanoparticles in absence and presence of 2D materials allowed us to quantify the contribution of chemical interface damping to the line width. Our analysis reveals that a stronger interaction (damping) occurs with 2D antimony-doped indium oxide due to its highly homogeneous surface. The results of this study offer new insight into the interaction between metal nanoparticles and 2D materials.

4.
Eur J Cancer Prev ; 33(4): 285-292, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215023

RESUMO

BACKGROUND: Pancreatic cancer is a leading cause of cancer-related death worldwide. Tryptophan plays a vital role in cell growth and maintenance as a building block of protein and coordination of organismal responses to environmental and dietary cues. Animal model study showed that dietary tryptophan improved treatment response in those who received chemotherapy or immune checkpoint inhibitors. Limited data are available assessing the association between tryptophan intake and risk of pancreatic cancer. We aimed to evaluate this association in a case-control study in Vietnam. METHODS: We analyzed data from a case-control study, including 3759 cancer cases and 2995 control subjects of whom 37 with pancreatic cancer cases. Tryptophan intake was derived from food frequency questionnaire. Unconditional logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for different levels of tryptophan intake with pancreatic cancer risk. RESULTS: Overall, tryptophan intake was inversely associated with pancreatic cancer risk in a dose-dependent manner. The ORs and 95% CIs of pancreatic cancer were 0.51 (0.29-0.92) for continuous scale, 0.27 (0.10-0.73) for tertile 2 and 0.34 (0.11-1.06) for tertile 3, compared with tertile 1 (the lowest intake) ( Ptrend = 0.02). In stratified analysis, this inverse association pattern was present among those with BMI < 23 kg/m 2 and ever drinkers. CONCLUSION: A diet with a higher intake of tryptophan was significantly associated with a lower incidence of pancreatic cancer among Vietnamese population. These suggest that dietary modification may be an effective strategy for primary prevention of pancreatic cancer development.


Assuntos
Neoplasias Pancreáticas , Triptofano , Humanos , Neoplasias Pancreáticas/epidemiologia , Neoplasias Pancreáticas/prevenção & controle , Estudos de Casos e Controles , Triptofano/administração & dosagem , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Vietnã/epidemiologia , Fatores de Risco , Dieta/estatística & dados numéricos , Adulto , Seguimentos
5.
Small ; : e2305469, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715087

RESUMO

The challenge of wound healing, particularly in patients with comorbidities such as diabetes, is intensified by wound infection and the accelerating problem of bacterial resistance to current remedies such as antibiotics and silver. One promising approach harnesses the bioactive and antibacterial compound C-phycocyanin from the microalga Spirulina maxima. However, the current processes of extracting this compound and developing coatings are unsustainable and difficult to achieve. To circumvent these obstacles, a novel, sustainable argon atmospheric plasma jet (Ar-APJ) technology that transforms S. maxima biomass into bioactive coatings is presented. This Ar-APJ can selectively disrupt the cell walls of S. maxima, converting them into bioactive ultrathin coatings, which are found to be durable under aqueous conditions. The findings demonstrate that Ar-APJ-transformed bioactive coatings show better antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Moreover, these coatings exhibit compatibility with macrophages, induce an anti-inflammatory response by reducing interleukin 6 production, and promote cell migration in keratinocytes. This study offers an innovative, single-step, sustainable technology for transforming microalgae into bioactive coatings. The approach reported here has immense potential for the generation of bioactive coatings for combating wound infections and may offer a significant advance in wound care research and application.

6.
iScience ; 26(4): 106493, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37091232

RESUMO

Metals tend to supercool-that is, they freeze at temperatures below their melting points. In general, supercooling is less favorable when liquids are in contact with nucleation sites such as rough surfaces. Interestingly, bulk gallium (Ga) can significantly supercool, even when it is in contact with heterogeneous surfaces that could provide nucleation sites. We hypothesized that the native oxide on Ga provides an atomically smooth interface that prevents Ga from directly contacting surfaces, and thereby promotes supercooling. Although many metals form surface oxides, Ga is a convenient metal for studying supercooling because its melting point of 29.8°C is near room temperature. Using differential scanning calorimetry (DSC), we show that freezing of Ga with the oxide occurs at a lower temperature (-15.6 ± 3.5°C) than without the oxide (6.9 ± 2.0°C when the oxide is removed by HCl). We also demonstrate that the oxide enhances supercooling via macroscopic observations of freezing. These findings explain why Ga supercools and have implications for emerging applications of Ga that rely on it staying in the liquid state.

7.
Nanoscale ; 15(10): 4972-4981, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36786287

RESUMO

Various non-stratified two-dimensional (2D) materials can be obtained from liquid metal surfaces that are not naturally accessible. Homogenous nucleation on atomically flat interfaces of liquid metals with air produces unprecedented high-quality oxide layers that can be transferred onto desired substrates. The atomically flat and large areas provide large surface-to-volume ratios ideal for sensing applications. Versatile crucial applications of the liquid metal-derived 2D oxides have been realized; however, their gas-sensing properties remain largely underexplored. The cubic In2O3 structure, which is nonlayered, can be formed as an ultrathin layer on the surface of liquid indium during the self-limiting Cabrera-Mott oxidation process in the air. The morphology, crystal structure, and band structure of the harvested 2D In2O3 nanosheets from liquid indium are characterized. Sensing capability toward several gases, both inorganic and organic, entailing NO2, O2, NH3, H2, H2S, CO, and Methyl ethyl ketone (MEK) are explored. A high ohmic resistance change of 1974% at 10 ppm, fast response, and recovery times are observed for NO2 at an optimum temperature of 200 °C. The sensing fundamentals are investigated for NO2, and its performances and cross-selectivity to different gases are analyzed. The NO2 sensing response from room temperature to 300 °C has been measured and discussed, and stability after 24 hours of continuous operation is presented. The results demonstrate liquid metal-derived 2D oxides as promising materials for gas sensing applications.

8.
Polymers (Basel) ; 14(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36559762

RESUMO

In this study, a eutectic gallium-indium (EGaIn) alloy and graphene nanoplatelets (GnPs) were employed as reinforcements for a comonomer vinyl ester (cVE) resin at different weight fractions up to 2% via a direct polymerization process. First, the effect of EGaIn on the curing kinetics of cVE was evaluated. The thermal and mechanical properties, and the fracture toughness of two types of cVE composites consisting of EGaIn and GnPs were then studied. The results showed that sub-micron sized EGaIn (≤1 wt.%) could promote the curing reaction of cVE without changing the curing mechanism. However, with further increases in EGaIn loading between 1 and 2 wt.%, the curing reaction rate tends to decrease. Both EGaIn and GnPs showed a significant enhancement in strengthening and toughening the cVE matrix with the presence of filler loading up to 1 wt.%. EGaIn was more effective than GnPs in promoting the flexural and impact strength. An increase of up to 50% and 32% were recorded for these mechanical properties, when EGaln was used, as compared to 46%, and 18% for GnPs, respectively. In contrast, the GnPs/cVE composites exhibited a greater improvement in the fracture toughness and fracture energy by up to 50% and 56% in comparison with those of the EGaIn/cVE ones by up to 32% and 39%, respectively. Furthermore, the stiffness of both the EgaIn/cVE and GnPs/cVE composites showed a significant improvement with an increase of up to 1.76 and 1.83 times in the normalized storage modulus, respectively, while the glass transition temperature (Tg) values remained relatively constant. This work highlights the potential of EGaIn being employed as a filler in creating high-performance thermoset composites, which facilitates its widening applications in many structural and engineering fields, where both higher toughness and stiffness are required.

9.
ACS Nano ; 16(4): 5476-5486, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35377615

RESUMO

Indium nitride (InN) has been of significant interest for creating and studying two-dimensional electron gases (2DEG). Herein we demonstrate the formation of 2DEGs in ultrathin doped and undoped 2D InN nanosheets featuring high carrier mobilities at room temperature. The synthesis is carried out via a two-step liquid metal-based printing method followed by a microwave plasma-enhanced nitridation reaction. Ultrathin InN nanosheets with a thickness of ∼2 ± 0.2 nm were isolated over large areas with lateral dimensions exceeding centimeter scale. Room temperature Hall effect measurements reveal carrier mobilities of ∼216 and ∼148 cm2 V-1 s-1 for undoped and doped InN, respectively. Further analysis suggests the presence of defined quantized states in these ultrathin nitride nanosheets that can be attributed to a 2D electron gas forming due to strong out-of-plane confinement. Overall, the combination of electronic and plasmonic features in undoped and doped ultrathin 2D InN holds promise for creating advanced optoelectronic devices and functional 2D heterostructures.

10.
Nanoscale ; 14(18): 6802-6810, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35471407

RESUMO

Gas-liquid reaction phenomena on liquid-metal solvents can be used to form intriguing 2D materials with large lateral dimensions, where the free energies of formation determine the final product. A vast selection of elements can be incorporated into the liquid metal-based nanostructures, offering a versatile platform for fabricating novel optoelectronic devices. While conventional doping techniques of semiconductors present several challenges for 2D materials. Liquid metals provide a facile route for obtaining doped 2D semiconductors. In this work, we successfully demonstrate that the doping of 2D SnS can be realized in a glove box containing a diluted H2S gas. Low melting point elements such as Bi and In are alloyed with base liquid Sn in varying concentrations, resulting in the doping of 2D SnS layers incorporating Bi and In sulphides. Optoelectronic properties for photodetectors and piezoelectronics can be fine-tuned through the controlled introduction of selective migration doping. The structural modification of 2D SnS results in a 22.6% enhancement of the d11 piezoelectric coefficient. In addition, photodetector response times have increased by several orders of magnitude. Doping methods using liquid metals have significantly changed the photodiode and piezoelectric device performances, providing a powerful approach to tune optoelectronic device outputs.

11.
J Am Chem Soc ; 144(13): 5723-5727, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35316019

RESUMO

Chemical modifications regulate the fate and function of cellular RNAs. Newly developed sequencing methods have allowed a deeper understanding of the biological role of RNA modifications; however, the vast majority of post-transcriptional modifications lack a well-defined sequencing method. Here, we report a photo-oxidative sequencing (PhOxi-seq) approach for guanosine N2-methylation, a common methylation mark seen in N2-methylguanosine (m2G) and N2,N2-dimethylguanosine (m22G). Using visible light-mediated organic photoredox catalysis, m2G and m22G are chemoselectively oxidized in the presence of canonical RNA nucleosides, which results in a strong mutation signature observed during sequencing. PhOxi-seq was demonstrated on various tRNAs and rRNA to reveal N2-methylation with excellent response and markedly improved read-through at m22G sites.


Assuntos
Guanosina , RNA , Catálise , Guanosina/metabolismo , Metilação , Nucleotídeos , RNA/genética , RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Transferência/genética
12.
Chem Soc Rev ; 51(4): 1253-1276, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35107468

RESUMO

The surfaces of liquid metals can serve as a platform to synthesise two-dimensional materials. By exploiting the self-limiting Cabrera-Mott oxidation reaction that takes place at the surface of liquid metals exposed to ambient air, an ultrathin oxide layer can be synthesised and isolated. Several synthesis approaches based on this phenomenon have been developed in recent years, resulting in a diverse family of functional 2D materials that covers a significant fraction of the periodic table. These straightforward and inherently scalable techniques may enable the fabrication of novel devices and thus harbour significant application potential. This review provides a brief introduction to liquid metals and their alloys, followed by detailed guidance on each developed synthesis technique, post-growth processing methods, integration processes, as well as potential applications of the developed materials.

14.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-925351

RESUMO

Purpose@#The purpose of this study was to evaluate the surgical outcome of split-thickness skin graft (STSG) for chronic diabetic wounds of the foot and ankle. @*Materials and Methods@#The medical records of 20 patients who underwent surgery for chronic diabetic wounds of the foot and ankle between October 2013 and May 2018 were reviewed. Surgical management consisted of consecutive debridement, followed by negativepressure wound therapy and STSG. We used an acellular dermal matrix between the wound and the overlying STSG in some patients with wide or uneven wounds. Patient satisfaction, comorbidities, wound size and location, length of hospital stay, wound healing time, and complications were investigated. @*Results@#Of 20 patients, 17 (85.0%) were satisfied with the surgical outcome. Eight patients had diabetic wounds associated with peripheral vascular disease (PVD), 7 patients had diabetic wounds without PVD, and 5 patients had acute infection superimposed with necrotizing abscesses. The mean size of the wound was 49.6 cm 2 . The mean length of hospital stay was 33.3 days. The mean time to wound healing was 7.9 weeks. The mean follow-up period was 25.9 months. Complications included delayed wound healing (4 cases) and recurrence of the diabetic wounds (2 cases), which were resolved by meticulous wound dressing. @*Conclusion@#STSG remains a good treatment strategy for chronic diabetic wounds of the foot and ankle.

15.
Materials (Basel) ; 14(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34885270

RESUMO

This paper presents insights into the blast response of sandwich panels with lightweight foam cores and asymmetric (different thicknesses) glass fibre epoxy face sheets. Viscously damped elastic vibrations were observed in the laminates (no core), while the transient response of the sandwich panels was more complex, especially after the peak displacement was observed. The post-peak residual oscillations in the sandwich panels were larger and did not decay as significantly with time when compared to the equivalent mass laminate panel test. Delamination was the predominant mode of failure on the thinner facesheet side of the sandwich panel, whereas cracking and matrix failure were more prominent on the thicker side (which was exposed to the blast). The type of constituent materials used and testing conditions, including the clamping method, influenced the resulting failure modes observed. A probable sequence of damage in the sandwich panels was proposed, based on the transient displacement measurements, a post-test failure analysis, and consideration of the stress wave propagation through the multilayered, multimaterial structure. This work demonstrates the need for detailed understanding of the transient behaviour of multilayered structures with significant elastic energy capacity and a wide range of possible damage mechanisms. The work should prove valuable to structural engineers and designers considering the deployment of foam-core sandwich panels or fibre reinforced polymer laminates in applications when air-blast loading may pose a credible threat.

16.
J Med Chem ; 64(15): 11129-11147, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34291633

RESUMO

Both previous and additional genetic knockdown studies reported herein implicate G protein-coupled receptor kinase 6 (GRK6) as a critical kinase required for the survival of multiple myeloma (MM) cells. Therefore, we sought to develop a small molecule GRK6 inhibitor as an MM therapeutic. From a focused library of known kinase inhibitors, we identified two hits with moderate biochemical potencies against GRK6. From these hits, we developed potent (IC50 < 10 nM) analogues with selectivity against off-target kinases. Further optimization led to the discovery of an analogue (18) with an IC50 value of 6 nM against GRK6 and selectivity against a panel of 85 kinases. Compound 18 has potent cellular target engagement and antiproliferative activity against MM cells and is synergistic with bortezomib. In summary, we demonstrate that targeting GRK6 with small molecule inhibitors represents a promising approach for MM and identify 18 as a novel, potent, and selective GRK6 inhibitor.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Quinases de Receptores Acoplados a Proteína G/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Quinases de Receptores Acoplados a Proteína G/metabolismo , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade
17.
Soft Matter ; 17(9): 2512-2517, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33506846

RESUMO

There is hitherto a lack of a simple way to disrupt the coating of particles from liquid marbles in order to introduce additional reagents. Here, a 40 µL liquid marble, created on a superhydrophobic substrate with a 2 mm hole, forms an overhead and overhanging liquid component from which a single gas bubble of up to 28 µL volume could be introduced via the latter. This caused a localized clearing of the particle shell at the apical region of the overhead component because the particles could not be energetically sustained at the thin film region of the bubble. The subsequent dispensation of 5 µL of an external liquid directly onto the shell-free apex of the liquid marble allowed the coalescence of the two liquid bodies, bubble rupture, and restoration of complete particle shell encapsulation. The addition of the liquid via the overhanging component was alternatively found incapable of increasing the size of the overhead drop component. The localized bubble-actuated transient shell clearance at the apex of the liquid marble to allow the addition of reagents shown here portends new vistas for liquid marbles to be used in biomedical applications.

18.
Chem Sci ; 12(2): 606-612, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34163791

RESUMO

A single-nucleotide resolution sequencing method of N 6-adenine methylation sites in DNA and RNA is described. Using sodium nitrite under acidic conditions, chemoselective deamination of unmethylated adenines readily occurs, without competing deamination of N 6-adenine sites. The deamination of adenines results in the formation of hypoxanthine bases, which are read by polymerases and reverse transcriptases as guanine; the methylated adenine sites resist deamination and are read as adenine. The approach, when coupled with high-throughput DNA sequencing and mutational analysis, enables the identification of N 6-adenine sites in RNA and DNA within various sequence contexts.

19.
Psychiatry Investigation ; : 674-680, 2020.
Artigo | WPRIM (Pacífico Ocidental) | ID: wpr-832530

RESUMO

Objective@#Although healthcare workers (HCWs) experienced significant stress during the 2015 outbreak of Middle East Respiratory Syndrome (MERS), the factors associated with this stress remain unknown. Thus, the present study assessed burnout among HCWs during the MERS outbreak to identify the influential factors involved in this process. @*Methods@#This study was a retrospective chart review of the psychological tests and questionnaires completed by 171 hospital employees from two general hospitals that treated MERS patients. The tests included the Oldenburg Burnout Inventory, Positive Resources Test, the questionnaires assessed exposure to the MERS outbreak event and perceptions about MERS. @*Results@#Of the 171 HCWs, 112 (65.5%) experienced disengagement and 136 (79.5%) suffered from exhaustion. Disengagement was associated with lower levels of purpose and hope, a higher perception of job risk, and exposure to the media. Exhaustion was associated with lower levels of purpose and hope, a higher perception of little control of the infection, a higher perception of job risk, prior experience related to infections, and being female. @*Conclusion@#Our results revealed the risk and protective factors associated with burnout among HCWs during an outbreak of MERS. These findings should be considered when determining interventional strategies aimed at ameliorating burnout among HCWs.

20.
Rev Sci Instrum ; 90(7): 076108, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31370467

RESUMO

A vast majority of syringe pumps operate on stepper motors, which limits their effectiveness for precision fluid delivery using estimation algorithms. Such a system also hampers the ability to ascertain if the infusion or aspiration instruction has been correctly carried out in the event of power interruptions. To address this issue, a linear servo based actuator system is described to provide absolute indications of the plunger position. System performance in terms of linearity and reliability of plunger translation were verified using a camera tracking system with syringe capacities ranging from 3 to 50 ml and at syringe plunger speeds ranging from 1 to 6.6 mm/s when distilled water was used as the medium. In investigations involving more viscous liquids, the system revealed similarly linear characteristics with 50% glycerol-water (v/v), but cyclical stick-slip behavior with Freund's adjuvant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA