Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Prod Res ; 38(10): 1739-1747, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37317836

RESUMO

One new sesquiterpenoid, curcaromatin (1), together with twenty-one known compounds 2-22, were isolated from the rhizomes of Curcuma aromatica Salisb. (Zingiberaceae). Their structures were established by extensive spectroscopic (1D and 2D NMR and HR-MS) analysis. Most of the isolated compounds were investigated for nitric oxide (NO) production in lipopolysaccharide (LPS)-activated RAW264.7 cells. (-)-Xanthorrhizol (3) displayed the strongest NO inhibitory activity with an IC50 value of 4.3 µM, which was 3.7-fold more active than the reference compound, aminoguanidine (IC50 15.9 µM). The selectivity index (SI > 28.1) of compound 3 was almost 3-fold higher than that of aminoguanidine.


Assuntos
Curcuma , Guanidinas , Sesquiterpenos , Curcuma/química , Óxido Nítrico , Rizoma/química , Sesquiterpenos/química , Lipopolissacarídeos/farmacologia , Estrutura Molecular
2.
Int J Biol Macromol ; 258(Pt 2): 129071, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159707

RESUMO

Vesicle delivery carriers, used to stabilize hydrophobic drugs, are characterized by the propensity to aggregate, and fuse, limiting its applications. Fortifying vesicle-entrapped drugs within a biodegradable polymeric film constitutes a promising solution. In this study, biodegradable poly (vinyl alcohol) copolymerized with gelatin-sericin film and integrated alongside vesicle-entrapped demethoxycurcumin (DMC) or bisdemethoxycurcumin (BDMC) was developed, extensively characterized for improve efficacy, and compared. Vesicle-entrapped DMC or BDMC was spherical in shape with no changes in size, zeta-potential, and morphology after storing at 4 °C for 30 days. Antibacterial activity of vesicle-entrapped DMC formulations against Acinetobacter baumannii and Staphylococcus epidermidis was more effective than that of its free form. DMC and BDMC demonstrated dose dependent reduction in lipopolysaccharides (LPS)-induced nitric oxide (NO) levels either in free or in entrapped form. Moreover, vesicle-entrapped DMC/BDMC suppressed NO production at lower concentrations, compared with that of their free form and significantly improved the viability of RAW264.7 and HaCaT cells. Furthermore, functionalized film with vesicle-entrapped DMC/BDMC demonstrated excellent radical scavenging, biocompatibility, and cell migration efficacy. Thus, incorporating vesicle, entrapped DMC/BDMC within biodegradable polymeric film may comprised a promising strategy for improving stability, wound healing, and inflammation attenuation efficacy.


Assuntos
Curcumina , Diarileptanoides , Sericinas , Curcumina/química , Gelatina , Etanol , Cicatrização , Anti-Inflamatórios
3.
Inflammopharmacology ; 31(4): 2023-2035, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37129718

RESUMO

Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) have high mortality rates. Though corticosteroids are commonly used for the treatment of these conditions, their efficacy has not been conclusively demonstrated and their use can induce various adverse reactions. Hence, the application of corticosteroids as therapeutic modalities for ALI/ARDS is limited. Meanwhile, the aporphine alkaloid oxocrebanine isolated from Stephania pierrei tubers has demonstrated anti-inflammatory efficacy in murine/human macrophage cell lines stimulated by lipopolysaccharide (LPS). Accordingly, the primary objectives of the present study are to investigate the anti-inflammatory effects of oxocrebanine on LPS-induced murine alveolar epithelial (MLE-12) cells and its efficacy against LPS-induced murine ALI. Results show that oxocrebanine downregulates the abundance of interleukin (IL)-1beta, IL-6, and inducible nitric oxide synthase, as well as the phosphorylation of nuclear factor-kappaB (NF-κB), stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), p38, protein kinase B (Akt), and glycogen synthase kinase-3beta signalling proteins in LPS-induced MLE-12 cells. Moreover, in a murine ALI model, oxocrebanine lowers lung injury scores and lung wet/dry weight ratios while reducing inflammatory cell infiltration. It also suppresses LPS-induced tumour necrosis factor-alpha and IL-6 in the bronchoalveolar lavage fluid and plasma. Moreover, oxocrebanine downregulates NF-κB, SAPK/JNK, p38, and Akt phosphorylation in the lung tissues of LPS-treated mice. Taken together, the foregoing results show that oxocrebanine provides significant protection against LPS-induced ALI in mice primarily by suppressing various inflammatory signalling pathways in alveolar epithelial cells and lung tissues. Hence, oxocrebanine might prove effective as an anti-inflammatory agent for the treatment of lung inflammation.


Assuntos
Lesão Pulmonar Aguda , Aporfinas , Síndrome do Desconforto Respiratório , Stephania , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lipopolissacarídeos , Interleucina-6 , Stephania/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Pulmão/metabolismo , Aporfinas/efeitos adversos , Anti-Inflamatórios/uso terapêutico , Síndrome do Desconforto Respiratório/tratamento farmacológico
4.
Inflammopharmacology ; 31(1): 529-541, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36580158

RESUMO

The anti-inflammatory actions of phytochemicals have attracted much attention due to the current state of numerous inflammatory disorders. Thai traditional medicine uses Maclura cochinchinensis (Lour.) Corner to treat chronic fever and various inflammatory diseases, as well as to maintain normal lymphatic function. Five flavonoids and five xanthones were isolated from the heartwood of M. cochinchinensis and we investigated the anti-inflammatory properties of the isolated compounds. All isolated compounds possessed an anti-inflammatory effect by decreasing prostaglandin E2 (PGE2) synthesis in lipopolysaccharide (LPS)-activated murine macrophages with varying degrees of potency. The greatest decrease in M1 inflammatory mediators, nitric oxide, PGE2, and proinflammatory cytokines was observed with 1,3,7-trihydroxyxanthone and 1,3,5-trihydroxyxanthone treatment of LPS-activated macrophages. The anti-inflammatory mechanism of the two xanthones is mediated by the suppression of inducible nitric oxide synthase, cyclooxygenase-2, and phosphatidylinositol 3-kinase/protein kinase B expression and the upregulation of M2 anti-inflammatory signalling proteins phosphorylated signal transducer and activator of transcription 6 and peroxisome proliferator-activated receptors-γ. 1,3,7-Trihydroxyxanthone exhibits superior induction of anti-inflammatory M2 mediator of LPS-activated macrophages by upregulating arginase1 expression. Following the resolution of inflammation, the two xanthones enhanced surface TLR4 expression compared to LPS-stimulated cells, possibly preserving macrophage function. Our research highlights the role of the two xanthones in modulating the M1/M2 macrophage polarisation to reduce inflammation and retain surface TLR4 once inflammation has been resolved. These findings support the use of xanthones for their anti-inflammatory effects in treating inflammatory dysregulation.


Assuntos
Maclura , Xantonas , Animais , Camundongos , Receptor 4 Toll-Like/metabolismo , Maclura/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Citocinas/metabolismo , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Xantonas/farmacologia , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
5.
Biochim Biophys Acta Mol Basis Dis ; 1869(1): 166590, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334837

RESUMO

Polymorphisms of phospholipase A2VIA (iPLA2ß or PLA2G6) are associated with body weights and blood C-reactive protein. The role of iPLA2ß/PLA2G6 in non-alcoholic steatohepatitis (NASH) is still elusive because female iPla2ß-null mice showed attenuated hepatic steatosis but exacerbated hepatic fibrosis after feeding with methionine- and choline-deficient diet (MCDD). Herein, female mice with myeloid- (MPla2g6-/-) and hepatocyte- (LPla2g6-/-) specific PLA2G6 deletion were generated and phenotyped after MCDD feeding. Without any effects on hepatic steatosis, MCDD-fed MPla2g6-/- mice showed further exaggeration of liver inflammation and fibrosis as well as elevation of plasma TNFα, CCL2, and circulating monocytes. Bone-marrow-derived macrophages (BMDMs) from MPla2g6-/- mice displayed upregulation of PPARγ and CEBPα proteins, and elevated release of IL6 and CXCL1 under LPS stimulation. LPS-stimulated BMDMs from MCDD-fed MPla2g6-/- mice showed suppressed expression of M1 Tnfa and Il6, but marked upregulation of M2 Arg1, Chil3, IL10, and IL13 as well as chemokine receptors Ccr2 and Ccr5. This in vitro shift was associated with exaggeration of hepatic M1/M2 cytokines, chemokines/chemokine receptors, and fibrosis genes. Contrarily, MCDD-fed LPla2g6-/- mice showed a complete protection which was associated with upregulation of Ppara/PPARα and attenuated expression of Pparg/PPARγ, fatty-acid uptake, triglyceride synthesis, and de novo lipogenesis genes. Interestingly, LPla2g6-/- mice fed with chow or MCDD displayed an attenuation of blood monocytes and elevation of anti-inflammatory lipoxin A4 in plasma and liver. Thus, PLA2G6 inactivation specifically in myeloid cells and hepatocytes led to opposing phenotypes in female mice undergoing NASH. Hepatocyte-specific PLA2G6 inhibitors may be further developed for treatment of this disease.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Feminino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Fosfolipases A2 Independentes de Cálcio , PPAR gama/genética , Interleucina-6 , Lipopolissacarídeos , Dieta , Hepatócitos , Fenótipo , Metionina , Colina , Racemetionina , PPAR alfa , Receptores de Quimiocinas , Fosfolipases A2 do Grupo VI/genética
6.
RSC Adv ; 12(40): 25912-25922, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36199617

RESUMO

To diminish chemical waste and improve the delivery of Curcuma longa L. (CL) constituents, microemulsions based on hydrophobic deep eutectic solvents (HDESs) were designed as ready-to-use solvents for CL extraction. The microemulsion (ME) of the ME-23 formulation (HDES/Tween 80 : propylene glycol (1 : 1)/water, 25/70/5) displayed CL extraction yields of 1.69, 3.04, 7.36, and 1.39 wt% of bisdemethoxycurcumin, demethoxycurcumin, curcumin, and aromatic-turmerone, respectively. The ME-23 without CL chemical constituents and ME-23-based CL extract inhibited NO production with an IC50 value of 0.0136 ± 0.0023%v/v and a curcumin IC50 value of 75.2 ± 6.7 nM, respectively, and simultaneously lowered inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-6, and IL-1ß production in lipopolysaccharide-activated murine macrophages. Authentic curcumin in ME-23 possessed superior NO inhibitory activity, which was 103-fold more effective than curcumin prepared in the conventional solvent dimethyl sulfoxide. ME-23 was also capable of delivering curcumin into murine macrophages. After 30 days of storage in HDES and HDES-based ME, curcumin remained more than 90%. ME-23 provides advantages for CL extraction, constituent delivery, and anti-inflammatory functions that can be applied to pharmaceutical and cosmetic products.

7.
Inflammopharmacology ; 30(4): 1369-1382, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35831735

RESUMO

Plant-derived medicinal compounds are increasingly being used to treat acute and chronic inflammatory diseases, which are generally caused by aberrant inflammatory responses. Stephania pierrei Diels, also known as Sabu-lueat in Thai, is a traditional medicinal plant that is used as a remedy for several inflammatory disorders. Since aporphine alkaloids isolated from S. pierrei tubers exhibit diverse pharmacological characteristics, we aimed to determine the anti-inflammatory effects of crude extracts and alkaloids isolated from S. pierrei tubers against lipopolysaccharide (LPS)-activated RAW264.7 macrophages. Notably, the n-hexane extract strongly suppressed nitric oxide (NO) while exhibiting reduced cytotoxicity. Among the five alkaloids isolated from the n-hexane extract, the aporphine alkaloid oxocrebanine exerted considerable anti-inflammatory effects by inhibiting NO secretion. Oxocrebanine also significantly suppressed prostaglandin E2, tumour necrosis factor-α, interleukin (IL)-1ß, IL-6, inducible nitric oxide synthase, and cyclooxygenase (COX)-2 protein expression by inactivating the nuclear factor κB, c-Jun NH2-terminal kinase, extracellular signal-regulated kinase 1/2, and phosphatidylinositol 3-kinase/Akt inflammatory signalling pathways. Molecular docking analysis further revealed that oxocrebanine has a higher affinity for toll-like receptor 4/myeloid differentiation primary response 88 signalling targets and the COX-2 protein than native ligands. Thus, our findings highlight the potential anti-inflammatory effects of oxocrebanine and suggest that certain alkaloids of S. pierrei could be used to treat inflammatory diseases.


Assuntos
Aporfinas , Stephania , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Aporfinas/metabolismo , Aporfinas/farmacologia , Ciclo-Oxigenase 2/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Stephania/metabolismo
8.
RSC Adv ; 12(27): 17443-17453, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35765438

RESUMO

Owing to their water insolubility, low stability, and poor absorption, anti-inflammatory curcuminoids (CUN) are difficult to be extracted and delivered to the action site. As a result, therapeutic hydrophobic deep eutectic solvents (HDESs), containing menthol and fatty acids (capric, caprylic, and oleic acids), are being developed for CUN solubilization and delivery. In this study, the anti-inflammatory effects of various combinations of HDESs with CUN and curcumin (CUR) were investigated on RAW264.7 macrophage cells. The results showed that CUN can be solubilized using the HDESs. The HDESs of oleic acid (OLA) : menthol (1 : 2, 1 : 1, and 2 : 1 molar ratios) exhibited anti-inflammatory effects, and OLA : menthol (1 : 1 molar ratio) increased the anti-inflammatory effects of CUR. The cytotoxicity of CUN and CUR was also lowered when combined with some OLA : menthol HDESs. The combination of OLA, menthol, and CUR entirely suppressed NO secretion without significant cytotoxicity. These results clearly indicate the potential of HDESs to solubilize CUN and impart anti-inflammatory properties. Furthermore, these solvents could replace organic solvents for CUN extraction, with the added benefit of being therapeutic, biodegradable, and safe for human consumption.

9.
Phytochemistry ; 200: 113225, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35537529

RESUMO

Marginaols G-M, a series of undescribed isopimarane diterpenoids, together with four known analogs were isolated from the rhizomes of Kaempferia marginata. The structures of these isolated compounds were characterized using high-resolution mass spectrometry and extensive 1D- and 2D-nuclear magnetic resonance (NMR) analyses. In addition, the absolute configurations of marginaol G and H were determined by X-ray crystallographic analysis and comparison with the literature values. When compared to the standard drug dexamethasone (IC50 4.7 µM), marginaol G, H, and 6ß-acetoxysandaracopimaradien-1α,9α-diol had an intriguing anti-inflammatory effect on NO inhibition in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages, with IC50 values ranging from 4.5 to 7.3 µM and being less cytotoxic to the cells. The anti-inflammatory action of these isopimarane diterpenoids from K. marginata supports the use of Thai traditional medicine for inflammation treatment.


Assuntos
Diterpenos , Zingiberaceae , Abietanos , Anti-Inflamatórios/farmacologia , Diterpenos/química , Estrutura Molecular , Rizoma/química , Zingiberaceae/química
10.
Molecules ; 27(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35335344

RESUMO

This study investigated the antioxidant, antimicrobial, anticancer, and phytochemical profiling of extracts from the leaves and stem/root of Acanthus ebracteatus (AE). The total phenolic content (TPC), total flavonoid content (TFC), 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical-scavenging activity, 2, 2'-azino-Bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical-scavenging activity, metal chelating activities (MCA), ferric reducing antioxidant power (FRAP) and oxygen radical antioxidant capacity (ORAC) were used for antioxidant assessment. The ethanolic extracts of the leaves (AEL-nor) and stem/root (AEWP-nor) without chlorophyll removal and those with chlorophyll removal, using sedimentation process (AEL-sed and AEWP-sed), were prepared. Generally, AEL-sed showed the highest antioxidant activity (FRAP: 1113.2 µmol TE/g; ORAC: 11.52 µmol TE/g; MCA: 47.83 µmol EDTA/g; ABTS 67.73 µmol TE/g; DPPH 498.8 µmol TE/g; TPC: 140.50 mg/GAE g and TFC: 110.40 mg/CE g) compared with other extracts. Likewise, AEL-sed also showed the highest bacteriostatic (MIC) and bactericidal (MBC) effects, as well as the highest anticancer and antiproliferative activity against oral squamous carcinoma (CLS-354/WT) cells. UPLC-ESI-QTOF/MS analysis of AEL-sed and AEWP-sed tentatively identified several bioactive compounds in the extracts, including flavonoids, phenols, iridoids, and nucleosides. Our results provide a potentially valuable application for A. ebracteatus, especially in further exploration of the plant in oxidative stress-related disorders, as well as the application of the plant as potential nutraceuticals and cosmeceuticals.


Assuntos
Acanthaceae , Antioxidantes , Antibacterianos , Antioxidantes/química , Fenóis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia
11.
Biomed Rep ; 15(3): 78, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34405050

RESUMO

Stroke represents the leading cause of disability and mortality amongst the elderly worldwide. Multiple risk factors, including both genetic and non-genetic components, as well as their interactions, are proposed as etiological factors involved in the development of ischemic stroke (IS). Promoter polymorphisms of the IL-6-174G/C (rs1800795) and TNF-α-308G/A (rs1800629) genes have been considered as predictive risk factors of IS; however, these have not yet been evaluated in a Thai population. The aims of this study were to investigate the association of IL-6-174G/C and TNF-α-308G/A polymorphisms with IS. Genomic DNA from 200 patients with IS and 200 controls were genotyped for IL-6-174G/C and TNF-α-308G/A polymorphisms using TaqMan™ SNP genotyping and quantitative PCR-high resolution melting analysis, respectively. It was found that the TNF-α-308 A allele was significantly associated with an increased risk of IS development compared with the G allele [odds ratio (OR)=2.044; 95% CI=1.154-3.620; P=0.014]. Moreover, the IS risk was significantly higher in the presence of TNF-α-308 GA or AA genotypes compared with that in the presence of GG genotypes with a dominant inheritance (OR=1.971; 95% CI=1.080-3.599; P=0.027). However, there was no association between IL-6-174G/C and the risk of IS development. The interaction study demonstrated that IL-6-174 GG and TNF-α-308 GG genotypes enhanced IS susceptibility when combined with hypertension, hyperlipidemia and alcohol consumption. Hypertensive and hyperlipidemic subjects with the TNF-α-308 GA and AA genotypes were more likely to develop IS compared with those who did not have these two conditions and had the GG genotype. In a matched study design (1:1), the IL-6-174 GC genotype was associated with higher IL-6 levels in the control group. Collectively, the present results highlight the utility of the TNF-α-308G/A polymorphism as a predictive genetic risk factor for development of IS.

12.
Mol Med Rep ; 23(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33495830

RESUMO

Trienones are curcuminoid analogues and are minor constituents in the rhizomes of numerous Curcuma plant species. Studies investigating the biological activities of trienones, particularly their anti­inflammatory activities, are limited. In the present study, the trienone 1,7­bis(4­hydroxy­3­methoxyphenyl)­1,4,6­heptatrien­3­one (HMPH) was structurally modified from curcumin using a novel and concise method. HMPH was shown to exhibit potential anti­inflammatory effects on lipopolysaccharide (LPS)­activated RAW264.7 macrophages. Furthermore, LPS­induced nitric oxide secretion in RAW264.7 cells was markedly and dose­dependently inhibited by HMPH; in addition, HMPH had a greater efficacy compared with curcumin. This inhibition was accompanied by the suppression of inducible nitric oxide synthase and cyclooxygenase­2 expression, as well as pro­inflammatory cytokine secretion. To elucidate the molecular mechanism underlying the anti­inflammatory effects of HMPH, the effects of this compound on nuclear factor­κB (NF­κB) translocation were assessed. HMPH significantly inhibited the translocation of p65 NF­κB into the nucleus to a greater extent than curcumin, thus indicating that HMPH has more potent anti­inflammatory activity than curcumin. In addition, an in silico modelling study revealed that HMPH possessed stronger binding energy to myeloid differentiation factor 2 (MD2) compared with that of curcumin, and indicated that the anti­inflammatory effects of HMPH may be through upstream inhibition of the inflammatory pathway. In conclusion, HMPH may be considered a promising compound for reducing inflammation via targeting p65 NF­κB translocation and interfering with MD2 binding.


Assuntos
Curcumina/análogos & derivados , Lipopolissacarídeos/toxicidade , Antígeno 96 de Linfócito , Macrófagos/metabolismo , Fator de Transcrição RelA , Animais , Curcumina/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Antígeno 96 de Linfócito/química , Antígeno 96 de Linfócito/metabolismo , Macrófagos/patologia , Camundongos , Células RAW 264.7 , Fator de Transcrição RelA/química , Fator de Transcrição RelA/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-33126675

RESUMO

The assessment of muscle strength by hand grip strength (HGS) is used to evaluate muscle weakness and wasting among stroke patients. This study aimed to investigate the association of oxidative stress/oxidative damage and inflammatory biomarkers with muscle strength and wasting, as evaluated by HGS, among community-dwelling post-stroke patients. The HGS of both paretic and non-paretic limbs was negatively associated with modified Rankin scale (mRS) values. The serum levels of catalase activity and malondialdehyde (MDA), and plasma tumor necrosis factor (TNF)-α levels were significantly increased in post-stroke patients compared with non-stroke controls. Further analysis highlighted that hydrogen peroxide was positively correlated with HGS in the paretic limbs. Interestingly, an elevated MDA level, excluding advanced age and high mRS, increased the risk of low HGS in the non-paretic limbs of stroke patients. This study suggests that there is a detrimental association between MDA and muscle strength and early muscle wasting among post-stroke patients. Hence, MDA is a potentially useful biomarker of muscle weakness and wasting in post-stroke patients living in the community.


Assuntos
Biomarcadores/análise , Força da Mão , Malondialdeído/análise , Debilidade Muscular/diagnóstico , Acidente Vascular Cerebral/complicações , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Vida Independente , Masculino , Pessoa de Meia-Idade
14.
RSC Adv ; 10(18): 10461-10470, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35492927

RESUMO

Five new triterpenoid saponin glycosides, trichocucumerisides A-E (1-5), together with eleven known compounds (6-16) were isolated from Trichosanthes cucumerina fruit fibers. The structures of the new compounds were elucidated by detailed analysis of NMR and mass spectroscopic data as well as chemical reactions. The anti-inflammatory study against nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells shows that compounds 7 and 9 exhibited stronger NO inhibitory activity, with IC50 values of 3.0 and 2.7 µM, respectively, with comparison to positive references Celecoxib and aminoguanidine (IC50 values 75.7 and 75.0 µM, respectively). Compounds 7 and 9 also possessed a greater selectivity index (SI) of approximately 3-4-fold activity than that of the positive references.

15.
J Nat Prod ; 83(1): 14-19, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31873014

RESUMO

Six new isopimarane diterpenes, marginaols A-F (1-6), along with eight known compounds (7-14), were isolated from the rhizomes of Kaempferia marginata. The structures and absolute configurations of 1-6 were established on the basis of spectroscopic methods and the experimental and calculated ECD data as well as comparison with the literature values. Most of the isolated compounds were tested for their nitric oxide (NO) inhibitory effects in lipopolysaccharide-activated RAW264.7 cells. Among them, marginaol B (2) was found to reduce NO levels in murine macrophage cells with an IC50 value of 28.1 ± 1.7 µM.


Assuntos
Anti-Inflamatórios/química , Diterpenos/química , Lipopolissacarídeos/química , Zingiberaceae/química , Abietanos , Anti-Inflamatórios/farmacologia , Macrófagos/efeitos dos fármacos , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Rizoma/química
16.
Iran J Pharm Res ; 17(4): 1347-1352, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30568693

RESUMO

Garcinia schomburgkiana, locally known in Thailand as an edible fruit "Ma-dan", is a plant species of the Clusiaceae family which has been reported as sources of a variety of compounds with biological activities. In the phytochemical studies of Ma-dan, four xanthones were, for the very first time, isolated from the branch acetone extract of G. schomburgkiana. Their structures were determined through the analysis of spectroscopic data (1H, 13C-NMR, IR and MS) and the comparison with those previously reported. Dihydroosajaxanthone (1), an original synthetic xanthone, is reported herein for the first time as a naturally occurring xanthone, together with three known xanthones: xanthochymone A (2), 1,3,7-trihydroxy-2-(3-hydroxy-3-methylbutyl) xanthone (3) and 1,3,5,6-tetrahydroxyxanthone (4). These compounds, especially dihydroosajaxanthone (1), might be considered as chemotaxonomic markers of the Garcinia genus.

17.
Biomed Pharmacother ; 101: 961-971, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29635906

RESUMO

The roots of Trigonostemon reidioides, Thai medicinal plant, have long been used as an antidote, laxative, and antiasthmatic, and also used as folk remedy for relieving inflammatory symptoms from poisonous insect and snake bites as well as abscesses and sprains. Here, we studied anti-inflammatory effects of a major diterpenoid named trigonoreidon B (TR-B) isolated from T. reidioides roots in lipopolysaccharide (LPS)-activated RAW264.7 macrophages and D-galactosamine (D-GalN)/LPS-induced inflammatory liver injury in mice. RAW264.7 cells were treated with TR-B or other available minor diterpenoids, and cell viability was determined by AlamarBlue. The levels of inflammatory mediators were determined by nitrite assay, ELISA, and luminescence. NF-κB nuclear translocation was investigated by indirect immunofluorescence. Expression levels were determined by real-time PCR and Western blotting. Transaminases and caspase activities were determined by using assay kits. Our results showed that TR-B was able to suppress PI3K/Akt activation and inflammatory induction in LPS-activated macrophages. These events were concomitant with TR-B's ability to hamper activated generation of reactive oxygen species, nitric oxide, prostaglandin E2, and cytokines as well as NF-κB p65 nuclear translocation. In an in vivo model of inflammatory liver injury, an administration of TR-B protected mice from D-GalN/LPS-induced liver injury by suppressing the elevation of serum TNF-α, transaminase activities, and hepatocyte apoptosis as well as an improvement of liver histopathology. During protection against liver damage, TR-B also prevented the loss of Akt phosphorylation. Collectively, the results of this present study suggested that TR-B exerted an anti-inflammatory effect via attenuating macrophage-mediated inflammation and inflammatory liver injury in vivo. TR-B may represent a promising lead compound for anti-inflammatory drug development.


Assuntos
Anti-Inflamatórios não Esteroides/isolamento & purificação , Anti-Inflamatórios não Esteroides/uso terapêutico , Diterpenos/isolamento & purificação , Diterpenos/uso terapêutico , Euphorbiaceae/química , Inflamação/tratamento farmacológico , Fígado/lesões , Macrófagos/metabolismo , Macrófagos/patologia , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Citocinas/metabolismo , Dinoprostona/metabolismo , Modelos Animais de Doenças , Diterpenos/química , Diterpenos/farmacologia , Glicogênio Sintase Quinase 3 beta , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Raízes de Plantas/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
18.
Asian Pac J Allergy Immunol ; 36(3): 184-190, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29246079

RESUMO

BACKGROUND: Targeting inflammatory macrophages and their products is an effective method for controlling inflammation. The pyrazole analog of curcumin (curcumin pyrazole, PYR) has been reported to possess superior anti-inflammatory activity to curcumin (CUR). However, the role of PYR anti-inflammatory activity in macrophages has not yet been elucidated. OBJECTIVE: To examine the anti-inflammatory effects of PYR and CUR in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages and determine the role of mitogen-activated protein kinases (MAPK) in their activity. METHODS: Nitrite level was investigated by the Griess assay. The expression of inducible nitric oxide (NO) synthase, cyclooxygenase-2 (COX-2), and MAPK proteins were analyzed by western blot analysis. The pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and interleukin-6 (IL-6) were measured by enzyme-linked immunosorbent assay. RESULTS: LPS-induced NO secretion in RAW 264.7 macrophages was potently inhibited by PYR (IC50 = 3.7 ± 0.16 µM), at a higher efficacy than CUR (IC50 = 11.0 ± 0.59 µM). Treatment with identical concentrations of PYR and CUR demonstrated that PYR drastically inhibited iNOS and COX-2 expression, whereas CUR only blocked COX-2. PYR reduced the LPS-induced secretion of TNF-α to a greater extent than CUR and both similarly reduced IL-1ß and IL-6 levels. Activation of c-Jun N-terminal kinase (JNK) MAPK was significantly decreased in LPS-activated RAW 264.7 macrophages upon PYR but not CUR treatment. CONCLUSION: PYR exhibited a more potent anti-inflammatory activity than CUR. This activity is partly mediated by PYR-depended inhibition of the JNK signaling pathway and underscores the utility of PYR as an anti-inflammatory agent in macrophages.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Curcumina/análogos & derivados , Curcumina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Animais , Ativação Enzimática/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Pirazóis/farmacologia , Células RAW 264.7
19.
Immunopharmacol Immunotoxicol ; 40(1): 43-51, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29199487

RESUMO

CONTEXT: Immune dysregulation has been implicated in the pathogenesis of many diseases. Macrophages play a crucial role contributing to the onset, progression, and resolution of inflammation. Macrophage inflammatory mediators are of considerable interest as potential targets to treat inflammatory diseases. OBJECTIVE: The present study was conducted to elucidate the anti-inflammatory mechanism of 2',4-dihydroxy-3',4',6'-trimethoxychalcone (1), the major chalcone isolated from Chromolaena odorata (L.) R.M.King & H.Rob, against lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophages. MATERIALS AND METHODS: Cell viability, nitric oxide (NO), and proinflammatory cytokines of LPS-activated RAW 264.7 cells were measured by MTT, Griess, and ELISA assays, respectively. Cell lysates were subjected to Western blotting for investigation of protein expression. RESULTS AND DISCUSSION: Treatment with the major chalcone 1 significantly attenuated the production of NO and proinflammatory cytokines, tumor necrosis factor-α, interleukin-1ß, and interleukin-6 in a dose-dependent manner. The chalcone suppressed nuclear factor-κB (NF-κB) stimulation by preventing activation of inhibitor κB kinase (IKK) α/ß, degradation of inhibitor κB (IκB) α, and translocation of p65 NF-κB into the nucleus. Additionally, the chalcone markedly repressed the phosphorylation of p38 mitogen-activated protein kinase (MAPK), but no further inhibition was detected for c-Jun N-terminal activated kinases or extracellular regulated kinases. Thus, suppression of NF-κB and p38 MAPK activation may be the core mechanism underlying the anti-inflammatory activity of 2',4-dihydroxy-3',4',6'-trimethoxychalcone (1). CONCLUSION: These findings provide evidence that 2',4-dihydroxy-3',4',6'-trimethoxychalcone (1) possesses anti-inflammatory activity via targeting proinflammatory macrophages. This anti-inflammatory chalcone is a promising compound for reducing inflammation.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Chalconas/farmacologia , Chromolaena/química , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , NF-kappa B/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Anti-Inflamatórios não Esteroides/química , Chalconas/química , Citocinas/metabolismo , Macrófagos/patologia , Camundongos , Óxido Nítrico/metabolismo , Células RAW 264.7
20.
Oncol Rep ; 37(2): 1243-1252, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28075474

RESUMO

Advanced oral squamous cell carcinoma (OSCC) is typically aggressive and closely correlated with disease recurrence and poor survival. Multidrug resistance (MDR) is the most critical problem leading to therapeutic failure. Investigation of novel anticancer candidates targeting multidrug-resistant OSCC cells may provide a basis for developing effective strategies for OSCC treatment. In the present study, we investigated the cytotoxic mechanism of a carbazole alkaloid, namely isomahanine, in a multidrug­resistant OSCC cell line CLS-354/DX. We demonstrated that CLS-354/DX cells overexpressing multidrug resistance-associated protein 1 (MRP1) were resistant to anticancer drugs cisplatin and camptothecin. Isomahanine effectively induced cytotoxicity against CLS-354/DX cells regardless of resistance. Apoptosis as determined by FITC­Annexin V/PI staining and western blot analysis of cleaved caspase-3 and cleaved poly(ADP­ribose) polymerase (PARP) was significantly induced in a time-dependent manner upon isomahanine treatment. Isomahanine-induced caspase­dependent apoptosis was determined using z-VAD­fmk. The effects on autophagy in isomahanine-treated cells were investigated via conversion of LC3B and degradation of p62/SQSTM1 (p62). Isomahanine obviously induced autophagic flux as shown by an increase in punctate GFP-LC3B and the LC3B-II/LC3B-I ratio with a concomitant decrease in p62 levels. Autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) protected isomahanine-induced cell death, indicating the activation of autophagic cell death. Endoplasmic reticulum (ER) stress and MAPK activation were examined to elucidate the mechanism underlying cell death. The expression levels of PERK, CHOP and phosphorylated MAPK (p38, ERK1/2 and JNK1/2) were upregulated following isomahanine treatment. We found that p38 MAPK inhibitor (SB203580) significantly attenuated isomahanine-induced apoptosis and autophagic flux and this prevented cell death. Collectively, the present study demonstrated that isomahanine was able to induce ER stress and trigger p38 MAPK-mediated apoptosis and autophagic cell death in multidrug-resistant OSCC cells. The potential cytotoxic action of isomahanine may provide the development of anticancer candidates for treating multidrug-resistant cancer.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neoplasias Bucais/tratamento farmacológico , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Caspases/metabolismo , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Humanos , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...