Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Anim Nutr ; 77(4): 261-274, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37338106

RESUMO

The chemical composition and amino acids (AA) digestibility were determined in insect meals from mealworms, crickets, black soldier fly (BSF) larvae and BSF prepupae, and soybean meal. Six caecectomised laying hens were individually housed in metabolism cages and fed either a basal diet or one of five assay diets. Diets and hens were arranged in a 6 × 6 Latin square design with 6 subsequent periods. In each period, the laying hens were fed their respective diet for 9 d, and excreta samples were quantitatively collected twice daily from day 5 to 8. On day 9, a sterile plastic bag was attached to the cloaca of each hen to collect excreta for microbiota analysis. The AA digestibility of the insect meals and soybean meal were calculated using a linear regression approach. Crude protein (CP) concentrations in crickets and mealworms were higher than the value in soybean meal, BSF prepupae and BSF larvae. Ether extract concentrations were high in the insect meals and low in the soybean meal. The digestibility of most essential AA in soybean meal was higher (p < 0.05) than in crickets and BSF prepupae and not different from AA digestibility in mealworms and BSF larvae (except for arginine and histidine). The gene copy number of Escherichia coli in excreta from hens fed with BSF prepupae was lower (p < 0.05) than those fed with BSF larvae, whereas the gene copy number of Bacillus spp. and Clostridium spp. in excreta from hens fed with crickets was lower (p < 0.05) than those fed with BSF larvae. In conclusion, the chemical composition and AA digestibility varied among insect meals based on insect species and life stage. The high level of AA digestibility of insect meals supports the assessment that insect meals are a suitable feed component for laying hens, but differences in AA digestibility should be considered in diet formulation.


Assuntos
Aminoácidos , Digestão , Animais , Feminino , Aminoácidos/metabolismo , Galinhas/metabolismo , Dieta/veterinária , Ração Animal/análise , Insetos/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Glycine max
2.
J Plant Physiol ; 252: 153247, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32768683

RESUMO

In the nitrogen fixation process, iron plays a vital role by being part of many symbiotic proteins, such as nitrogenase and leghemoglobin, in an active symbiosis. Excess or insufficient iron in active nitrogen fixation negatively affects the entire process. In Lotus japonicus nodules, ferritin is expressed at the initial stages of nodule development and increases at the nodule senescence stage to mobilize iron release during that stage. In this study, we investigated the effects of overexpressing and suppressing ferritin on nitrogen fixation. Acetylene reduction activity revealed that nitrogen fixation is affected by the overexpression of ferritin at high iron concentrations, but at low iron concentrations, higher nitrogen fixation was observed in ferritin-suppressed plants. qRT-PCR data indicated that suppression of ferritin in nodules induces antioxidant genes, such as superoxide dismutase, dehydroascorbate reductase and ascorbate peroxidase, to detoxify reactive oxygen species. Our data suggest that suppressing ferritin in the nodules is effective for higher nitrogen fixation under iron deficient conditions. Overaccumulated ferritin in nodule is effective under the higher iron conditions, such as senescence state.


Assuntos
Ferritinas/metabolismo , Ferro/administração & dosagem , Lotus/metabolismo , Fixação de Nitrogênio , Relação Dose-Resposta a Droga , Nódulos Radiculares de Plantas/metabolismo
3.
Plant Biotechnol (Tokyo) ; 35(2): 123-129, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31819714

RESUMO

Rhizobia were isolated from the root nodules of Clitoria ternatea in Thailand. The phylogeny of the isolates was investigated using 16S rDNA and the internal transcribed spacer (ITS) region from 16S to 23S rDNA. The phylogenetic tree of the 16S rDNA showed that ten of the eleven isolates belonged to Bradyrhizobium elkanii, and one belonged to Bradyrhizobium japonicum. The topology of the ITS tree was similar to that of 16S rDNA. The acetylene reduction activity was higher for the nodules inoculated with the isolated B. elkanii strains than for those inoculated with B. japonicum strains. When C. ternatea plants were inoculated with various Bradyrhizobium USDA strains isolated from Glycine max, C. ternatea formed many effective nodules with B. elkanii, especially USDA61. However, acetylene reduction activity per plant and the growth were higher in C. ternatea inoculated with our isolates. From these data we propose that effective rhizobia inoculant were identified for C. ternatea cultivation.

4.
J Plant Physiol ; 208: 40-46, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27889519

RESUMO

Iron is an essential nutrient for legume-rhizobium symbiosis and accumulates abundantly in the nodules. However, the concentration of free iron in the cells is strictly controlled to avoid toxicity. It is known that ferritin accumulates in the cells as an iron storage protein. During nodule senescence, the expression of the ferritin gene, Ljfer1, was induced in Lotus japonicus. We investigated a signal transduction pathway leading to the increase of Ljfer1 in the nodule. The Ljfer1 promoter of L. japonicus contains a conserved Iron-Dependent Regulatory Sequence (IDRS). The expression of Ljfer1 was induced by the application of iron or sodium nitroprusside, which is a nitric oxide (NO) donor. The application of iron to the nodule increased the level of NO. These data strongly suggest that iron-induced NO leads to increased expression of Ljfer1 during the senescence of L. japonicus nodules.


Assuntos
Ferritinas/metabolismo , Ferro/farmacologia , Lotus/fisiologia , Mesorhizobium/fisiologia , Óxido Nítrico/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Reporter , Ferro/metabolismo , Lotus/citologia , Lotus/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/fisiologia , Transdução de Sinais , Simbiose
5.
J Plant Physiol ; 171(5): 104-8, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24484964

RESUMO

In this study, we focused on the effect of glutamine synthetase (GSI) activity in Mesorhizobium loti on the symbiosis between the host plant, Lotus japonicus, and the bacteroids. We used a signature-tagged mutant of M. loti (STM30) with a transposon inserted into the GSI (mll0343) gene. The L. japonicus plants inoculated with STM30 had significantly more nodules, and the occurrence of senesced nodules was much higher than in plants inoculated with the wild-type. The acetylene reduction activity (ARA) per nodule inoculated with STM30 was lowered compared to the control. Also, the concentration of chlorophyll, glutamine, and asparagine in leaves of STM30-infected plants was found to be reduced. Taken together, these data demonstrate that a GSI deficiency in M. loti differentially affects legume-rhizobia symbiosis by modifying nodule development and metabolic processes.


Assuntos
Glutamato-Amônia Ligase/genética , Lotus/metabolismo , Lotus/microbiologia , Mesorhizobium/fisiologia , Fixação de Nitrogênio , Simbiose , Glutamato-Amônia Ligase/deficiência , Mesorhizobium/genética , Mesorhizobium/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...