Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1227212, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37588136

RESUMO

Introduction: Microbial systems, such as Escherichia coli, as host recombinant expression is the most versatile and the cheapest system for protein production, however, several obstacles still remain, such as recovery of soluble and functional proteins from inclusion bodies, elimination of lipopolysaccharides (LPS) contamination, incomplete synthesis, degradation by proteases, and the lack of post-translational modifications, which becomes even more complex when comes to membrane proteins, because they are difficult not only to produce but also to keep in solution in its active state. T-cell Immunoglobulin and Mucin domain 3 (TIM-3) is a type I transmembrane protein that is predominantly expressed on the surface of T lymphocytes, natural killer (NK) cells, dendritic cells, and macrophages, playing a role as a negative immune checkpoint receptor. TIM-3 comprises a single ectodomain for interaction with immune system soluble and cellular components, a transmembrane domain, and a cytoplasmic tail, responsible for the binding of signaling and scaffolding molecules. TIM-3 pathway holds potential as a therapeutic target for immunotherapy against tumors, autoimmunity, chronic virus infections, and various malignancies, however, many aspects of the biology of this receptor are still incompletely understood, especially regarding its ligands. Methods: Here we overcome, for the first time, the challenge of the production of active immune checkpoint protein recovered from bacterial cytoplasmic inclusion bodies, being able to obtain an active, and non-glycosylated TIM-3 ectodomain (TIM-3-ECD), which can be used as a tool to better understand the interactions and roles of this immune checkpoint. The TIM-3 refolding was obtained by the association of high pressure and alkaline pH. Results: The purified TIM-3-ECD showed the correct secondary structure and was recognized from anti-TIM-3 structural-dependent antibodies likewise commercial TIM-3-ECD was produced by a mammal cells system. Furthermore, immunofluorescence showed the ability of TIM-3-ECD to bind to the surface of lung cancer A549 cells and to provide an additional boost for the expression of the lymphocyte activation marker CD69 in anti-CD3/CD28 activated human PBMC. Discussion: Taken together these results validated a methodology able to obtain active checkpoint proteins from bacterial inclusion bodies, which will be helpful to further investigate the interactions of this and others not yet explored immune checkpoints.

2.
Cell Death Dis ; 5: e1371, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25118931

RESUMO

Endostatin (ES) inhibits angiogenesis, reducing tumor growth in animal models. However, it has low therapeutic effect in human clinical trials. BAX is a member of the BCL-2 family of proteins; its proapoptotic (BH3) domain interacts with other members of the family in the cytoplasm, to induce apoptosis. Here, we fused the BAX BH3 domain with murine ES, to enhance ES potency. Endothelial cells specifically internalize the fusion protein ES-BAX. The presence of the BAX domain enhances endothelial cell death by apoptosis by 1.8-fold and diminishes microvessel outgrowth in the rat aortic ring assay by 6.5-fold. Daily injections of 15 µg of ES-BAX/g in tumor-bearing mice reduce tumor weight by 86.9% as compared with ES-treated animals. Co-immunoprecipitation assays confirmed that ES-BAX interacts with members of the BCL-2 family. Also, ES interacts with BCL-2, BCL-XL, and BAK in endothelial cell lysates, suggesting a potential new mechanism for the apoptosis induction by ES. The superiority of the ES-BAX antiangiogenic effect indicates that this fusion protein could be a promising therapeutic alternative to treat cancer.


Assuntos
Inibidores da Angiogênese/toxicidade , Apoptose/efeitos dos fármacos , Endostatinas/toxicidade , Proteína X Associada a bcl-2/metabolismo , Sequência de Aminoácidos , Inibidores da Angiogênese/uso terapêutico , Animais , Linhagem Celular Tumoral , Endostatinas/genética , Endostatinas/uso terapêutico , Escherichia coli/metabolismo , Neoplasias Renais/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Células NIH 3T3 , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/uso terapêutico , Proteínas Recombinantes de Fusão/toxicidade , Transplante Homólogo , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/genética
3.
J Biotechnol ; 173: 98-105, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24445168

RESUMO

The production of recombinant proteins is an essential tool for the expansion of modern biological research and biotechnology. The expression of heterologous proteins in Escherichia coli often results in an incomplete folding process that leads to the accumulation of inclusion bodies (IB), aggregates that hold a certain degree of native-like secondary structure. High hydrostatic pressure (HHP) impairs intermolecular hydrophobic and electrostatic interactions, leading to dissociation of aggregates under non-denaturing conditions and is therefore a useful tool to solubilize proteins for posterior refolding. Cholera toxin (CT) is composed of a non-toxic pentamer of B subunits (CTB), a useful adjuvant in vaccines, and a toxic subunit A (CTA). We studied the process of refolding of CTB using HHP. HHP was shown to be effective for dissociation of CTB monomers from IB. Posterior incubation at atmospheric pressure of concentrated CTB (1mg/ml) is necessary for the association of the monomers. Pentameric CTB was obtained when suspensions of CTB IB were compressed at 2.4kbar for 16h in the presence of Tween 20 and incubated at 1bar for 120h. Soluble and biologically active pentameric CTB was obtained, with a yield of 213mg CTB/liter of culture. The experience gained in this study can be important to improve the refolding of proteins with quaternary structure.


Assuntos
Toxina da Cólera/química , Toxina da Cólera/metabolismo , Redobramento de Proteína , Vibrio cholerae/genética , Toxina da Cólera/genética , Dicroísmo Circular , Escherichia coli/metabolismo , Pressão Hidrostática/efeitos adversos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vibrio cholerae/metabolismo
4.
Cell Transplant ; 19(3): 269-77, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19951460

RESUMO

Endostatin (ES) is a potent inhibitor of angiogenesis and tumor growth. Continuous ES delivery of ES improves the efficacy and potency of the antitumoral therapy. The TheraCyte system is a polytetrafluoroethylene (PTFE) semipermeable membrane macroencapsulation system for implantation of genetically engineered cells specially designed for the in vivo delivery of therapeutic proteins, such as ES, which circumvents the problem of limited half-life and variation in circulating levels. In order to enable neovascularization at the tissues adjacent to the devices prior to ES secretion by the cells inside them, we designed a scheme in which empty TheraCyte devices were preimplanted SC into immunodeficient mice. Only after healing (17 days later) were Chinese hamster ovary cells expressing ES injected into the preimplanted devices. In another model for device implantation, the cells expressing ES where loaded into the immunoisolation devices prior to implantation into the animals, and the TheraCyte were then immediately implanted SC into the mice. Throughout the 2-month study, constant high ES levels of up to 3.7 microg/ml were detected in the plasma of the mice preimplanted with the devices, while lower but also constant levels of ES (up to 2.1 microg/ml plasma) were detected in the mice that had received devices preloaded with the ES-expressing cells. Immunohistochemistry using anti-ES antibody showed reaction within the device and outside it, demonstrating that ES, secreted by the confined recombinant cells, permeated through the membrane and reached the surrounding tissues.


Assuntos
Transplante de Células/instrumentação , Transplante de Células/métodos , Terapia Baseada em Transplante de Células e Tecidos/instrumentação , Terapia Baseada em Transplante de Células e Tecidos/métodos , Sistemas de Liberação de Medicamentos/instrumentação , Endostatinas/farmacocinética , Animais , Células CHO , Cápsulas , Bovinos , Cricetinae , Cricetulus , Sistemas de Liberação de Medicamentos/métodos , Endostatinas/sangue , Endostatinas/uso terapêutico , Camundongos , Camundongos SCID
5.
Toxicon ; 54(2): 110-20, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19341755

RESUMO

Gyroxin is one of main serine proteases of Crotalus durissus terrificus venom, representing about 2% of the protein content in the crude venom. It is a 33 kDa glycoprotein with 3.8% by weight of sugar moiety. This toxin induces hemotoxicity in mice and a neurological condition called barrel rotation syndrome. In the present work, we report the molecular cloning of five new nucleotide sequences from a cDNA library of the venom glands of a single specimen of C. d. terrificus. These sequences have been analyzed in silico with respect to their cDNA organization and similarity with other snake venom serine proteases (SVSPs). We also describe a rapid and efficient method for screening vectors for mammalian cell expression, based on the fact that SVSPs are difficult-to-express toxins due to the presence of several disulfide bonds and glycosylation in their structures. Thus, one of the Gyroxin cDNAs was subcloned into pSectag2 HygroA and pED vectors and used to transfect COS-7 cells. Expression of the functional recombinant Gyroxin isoform was achieved with this cell line with esterase activity in the conditioned culture medium, as revealed by immunoblot of secreted protein and standard anti-crotalic serum from Butantan Institute.


Assuntos
Venenos de Crotalídeos/biossíntese , DNA Complementar/biossíntese , Glândulas Exócrinas/química , Serina Endopeptidases/biossíntese , Sequência de Aminoácidos , Animais , Western Blotting , Células COS , Chlorocebus aethiops , Clonagem Molecular , Venenos de Crotalídeos/enzimologia , Venenos de Crotalídeos/genética , DNA Complementar/genética , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Esterases/química , Esterases/metabolismo , Glândulas Exócrinas/enzimologia , Biblioteca Gênica , Vetores Genéticos , Camundongos , Peso Molecular , Plasmídeos/genética , Proteínas Recombinantes/genética , Serina Endopeptidases/genética
6.
Protein Expr Purif ; 35(1): 11-6, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15039060

RESUMO

Endostatin, a carboxy-terminal fragment of collagen XVIII, has been shown to act as an anti-angiogenic agent that specifically inhibits proliferation of endothelial cells and growth of various primary tumors. Here, we describe the expression by Chinese hamster ovary (CHO) cells of murine endostatin and of a tagged-fusion protein, (his)6-met-endostatin. A dicistronic mRNA expression vector was utilized in which endostatin cDNA was inserted upstream of the amplifiable marker gene, dihydrofolate reductase (DHFR). After transfection of the expression vectors, stepwise increments in methotrexate levels in the culture medium were applied, promoting gene amplification and increasing expression levels of the proteins of interest. The expression level of secreted native endostatin was about 78 microg/mL while the one for secreted (his)6-met-endostatin was about 114 microg/mL, for the best expressing clones. Characterization of physico-chemical and immunological activities of the proteins was performed using SDS-PAGE and Western blotting. The biological activities of recombinant endostatins were tested with a cow pulmonary artery endothelial (C-PAE) cell proliferation assay. Both recombinant endostatin and (his)6-met-endostatin inhibited, in a dose-dependent fashion, growth of C-PAE cells stimulated by basic fibroblast growth factor (bFGF).


Assuntos
Inibidores da Angiogênese/metabolismo , Endostatinas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Inibidores da Angiogênese/genética , Animais , Células CHO , Divisão Celular/fisiologia , Cricetinae , Endostatinas/química , Endostatinas/genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Camundongos , Dobramento de Proteína , Proteínas Recombinantes de Fusão/genética , Tetra-Hidrofolato Desidrogenase/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...