Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 9(3): 668-691, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36853190

RESUMO

The development of new antimalarials is required because of the threat of resistance to current antimalarial therapies. To discover new antimalarial chemotypes, we screened the Janssen Jumpstarter library against the P. falciparum asexual parasite and identified the 7-N-substituted-3-oxadiazole quinolone hit class. We established the structure-activity relationship and optimized the antimalarial potency. The optimized analog WJM228 (17) showed robust metabolic stability in vitro, although the aqueous solubility was limited. Forward genetic resistance studies uncovered that WJM228 targets the Qo site of cytochrome b (cyt b), an important component of the mitochondrial electron transport chain (ETC) that is essential for pyrimidine biosynthesis and an established antimalarial target. Profiling against drug-resistant parasites confirmed that WJM228 confers resistance to the Qo site but not Qi site mutations, and in a biosensor assay, it was shown to impact the ETC via inhibition of cyt b. Consistent with other cyt b targeted antimalarials, WJM228 prevented pre-erythrocytic parasite and male gamete development and reduced asexual parasitemia in a P. berghei mouse model of malaria. Correcting the limited aqueous solubility and the high susceptibility to cyt b Qo site resistant parasites found in the clinic will be major obstacles in the future development of the 3-oxadiazole quinolone antimalarial class.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária Falciparum , Quinolonas , Animais , Camundongos , Antimaláricos/farmacologia , Citocromos b , Antagonistas do Ácido Fólico/metabolismo , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Plasmodium falciparum , Quinolonas/farmacologia
2.
J Med Chem ; 66(5): 3540-3565, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36812492

RESUMO

There is an urgent need to populate the antimalarial clinical portfolio with new candidates because of resistance against frontline antimalarials. To discover new antimalarial chemotypes, we performed a high-throughput screen of the Janssen Jumpstarter library against the Plasmodium falciparum asexual blood-stage parasite and identified the 2,3-dihydroquinazolinone-3-carboxamide scaffold. We defined the SAR and found that 8-substitution on the tricyclic ring system and 3-substitution of the exocyclic arene produced analogues with potent activity against asexual parasites equivalent to clinically used antimalarials. Resistance selection and profiling against drug-resistant parasite strains revealed that this antimalarial chemotype targets PfATP4. Dihydroquinazolinone analogues were shown to disrupt parasite Na+ homeostasis and affect parasite pH, exhibited a fast-to-moderate rate of asexual kill, and blocked gametogenesis, consistent with the phenotype of clinically used PfATP4 inhibitors. Finally, we observed that optimized frontrunner analogue WJM-921 demonstrates oral efficacy in a mouse model of malaria.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum , Homeostase , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia
3.
ACS Infect Dis ; 9(3): 527-539, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763526

RESUMO

Current malaria treatments are threatened by drug resistance, and new drugs are urgently needed. In a phenotypic screen for new antimalarials, we identified (S)-SW228703 ((S)-SW703), a tyrosine amide with asexual blood and liver stage activity and a fast-killing profile. Resistance to (S)-SW703 is associated with mutations in the Plasmodium falciparum cyclic amine resistance locus (PfCARL) and P. falciparum acetyl CoA transporter (PfACT), similarly to several other compounds that share features such as fast activity and liver-stage activity. Compounds with these resistance mechanisms are thought to act in the ER, though their targets are unknown. The tyramine of (S)-SW703 is shared with some reported PfCARL-associated compounds; however, we observed that strict S-stereochemistry was required for the activity of (S)-SW703, suggesting differences in the mechanism of action or binding mode. (S)-SW703 provides a new chemical series with broad activity for multiple life-cycle stages and a fast-killing mechanism of action, available for lead optimization to generate new treatments for malaria.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/química , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Malária Falciparum/tratamento farmacológico , Malária/tratamento farmacológico , Fígado , Aminas/metabolismo
4.
Science ; 376(6597): 1074-1079, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35653481

RESUMO

Aminoacyl transfer RNA (tRNA) synthetases (aaRSs) are attractive drug targets, and we present class I and II aaRSs as previously unrecognized targets for adenosine 5'-monophosphate-mimicking nucleoside sulfamates. The target enzyme catalyzes the formation of an inhibitory amino acid-sulfamate conjugate through a reaction-hijacking mechanism. We identified adenosine 5'-sulfamate as a broad-specificity compound that hijacks a range of aaRSs and ML901 as a specific reagent a specific reagent that hijacks a single aaRS in the malaria parasite Plasmodium falciparum, namely tyrosine RS (PfYRS). ML901 exerts whole-life-cycle-killing activity with low nanomolar potency and single-dose efficacy in a mouse model of malaria. X-ray crystallographic studies of plasmodium and human YRSs reveal differential flexibility of a loop over the catalytic site that underpins differential susceptibility to reaction hijacking by ML901.


Assuntos
Antimaláricos , Malária Falciparum , Terapia de Alvo Molecular , Plasmodium falciparum , Biossíntese de Proteínas , Proteínas de Protozoários , Tirosina-tRNA Ligase , Adenosina/análogos & derivados , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Cristalografia por Raios X , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Camundongos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Biossíntese de Proteínas/efeitos dos fármacos , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Ácidos Sulfônicos/química , Tirosina-tRNA Ligase/química , Tirosina-tRNA Ligase/metabolismo
5.
Nat Commun ; 13(1): 2158, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35444200

RESUMO

Drug resistance and a dire lack of transmission-blocking antimalarials hamper malaria elimination. Here, we present the pantothenamide MMV693183 as a first-in-class acetyl-CoA synthetase (AcAS) inhibitor to enter preclinical development. Our studies demonstrate attractive drug-like properties and in vivo efficacy in a humanized mouse model of Plasmodium falciparum infection. The compound shows single digit nanomolar in vitro activity against P. falciparum and P. vivax clinical isolates, and potently blocks P. falciparum transmission to Anopheles mosquitoes. Genetic and biochemical studies identify AcAS as the target of the MMV693183-derived antimetabolite, CoA-MMV693183. Pharmacokinetic-pharmacodynamic modelling predict that a single 30 mg oral dose is sufficient to cure a malaria infection in humans. Toxicology studies in rats indicate a > 30-fold safety margin in relation to the predicted human efficacious exposure. In conclusion, MMV693183 represents a promising candidate for further (pre)clinical development with a novel mode of action for treatment of malaria and blocking transmission.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária Falciparum , Malária Vivax , Malária , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Vivax/tratamento farmacológico , Camundongos , Ácido Pantotênico/análogos & derivados , Plasmodium falciparum/genética , Ratos
6.
PLoS Pathog ; 18(2): e1010276, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35130301

RESUMO

Formation of gametes in the malaria parasite occurs in the midgut of the mosquito and is critical to onward parasite transmission. Transformation of the male gametocyte into microgametes, called microgametogenesis, is an explosive cellular event and one of the fastest eukaryotic DNA replication events known. The transformation of one microgametocyte into eight flagellated microgametes requires reorganisation of the parasite cytoskeleton, replication of the 22.9 Mb genome, axoneme formation and host erythrocyte egress, all of which occur simultaneously in <20 minutes. Whilst high-resolution imaging has been a powerful tool for defining stages of microgametogenesis, it has largely been limited to fixed parasite samples, given the speed of the process and parasite photosensitivity. Here, we have developed a live-cell fluorescence imaging workflow that captures the entirety of microgametogenesis. Using the most virulent human malaria parasite, Plasmodium falciparum, our live-cell approach captured early microgametogenesis with three-dimensional imaging through time (4D imaging) and microgamete release with two-dimensional (2D) fluorescence microscopy. To minimise the phototoxic impact to parasites, acquisition was alternated between 4D fluorescence, brightfield and 2D fluorescence microscopy. Combining live-cell dyes specific for DNA, tubulin and the host erythrocyte membrane, 4D and 2D imaging together enables definition of the positioning of newly replicated and segregated DNA. This combined approach also shows the microtubular cytoskeleton, location of newly formed basal bodies, elongation of axonemes and morphological changes to the erythrocyte membrane, the latter including potential echinocytosis of the erythrocyte membrane prior to microgamete egress. Extending the utility of this approach, the phenotypic effects of known transmission-blocking inhibitors on microgametogenesis were confirmed. Additionally, the effects of bortezomib, an untested proteasomal inhibitor, revealed a clear block of DNA replication, full axoneme nucleation and elongation. Thus, as well as defining a framework for broadly investigating microgametogenesis, these data demonstrate the utility of using live imaging to validate potential targets for transmission-blocking antimalarial drug development.


Assuntos
Citoesqueleto/metabolismo , Gametogênese , Malária Falciparum/parasitologia , Imagem Óptica/métodos , Plasmodium falciparum/citologia , Plasmodium falciparum/fisiologia , Animais , Membrana Celular/metabolismo , DNA de Protozoário/metabolismo , Eritrócitos/parasitologia , Células Germinativas/fisiologia , Humanos , Imageamento Tridimensional/métodos , Proteínas de Protozoários/metabolismo , Fluxo de Trabalho
7.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34548400

RESUMO

The Plasmodium falciparum proteasome is a potential antimalarial drug target. We have identified a series of amino-amide boronates that are potent and specific inhibitors of the P. falciparum 20S proteasome (Pf20S) ß5 active site and that exhibit fast-acting antimalarial activity. They selectively inhibit the growth of P. falciparum compared with a human cell line and exhibit high potency against field isolates of P. falciparum and Plasmodium vivax They have a low propensity for development of resistance and possess liver stage and transmission-blocking activity. Exemplar compounds, MPI-5 and MPI-13, show potent activity against P. falciparum infections in a SCID mouse model with an oral dosing regimen that is well tolerated. We show that MPI-5 binds more strongly to Pf20S than to human constitutive 20S (Hs20Sc). Comparison of the cryo-electron microscopy (EM) structures of Pf20S and Hs20Sc in complex with MPI-5 and Pf20S in complex with the clinically used anti-cancer agent, bortezomib, reveal differences in binding modes that help to explain the selectivity. Together, this work provides insights into the 20S proteasome in P. falciparum, underpinning the design of potent and selective antimalarial proteasome inhibitors.


Assuntos
Compostos de Boro/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/química , Inibidores de Proteassoma/farmacologia , Administração Oral , Animais , Compostos de Boro/administração & dosagem , Compostos de Boro/química , Domínio Catalítico , Humanos , Malária Falciparum/enzimologia , Malária Falciparum/parasitologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Moleculares , Plasmodium falciparum/enzimologia , Inibidores de Proteassoma/administração & dosagem , Inibidores de Proteassoma/química
8.
ACS Infect Dis ; 7(6): 1680-1689, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33929818

RESUMO

Prolyl-tRNA synthetase (PRS) is a clinically validated antimalarial target. Screening of a set of PRS ATP-site binders, initially designed for human indications, led to identification of 1-(pyridin-4-yl)pyrrolidin-2-one derivatives representing a novel antimalarial scaffold. Evidence designates cytoplasmic PRS as the drug target. The frontrunner 1 and its active enantiomer 1-S exhibited low-double-digit nanomolar activity against resistant Plasmodium falciparum (Pf) laboratory strains and development of liver schizonts. No cross-resistance with strains resistant to other known antimalarials was noted. In addition, a similar level of growth inhibition was observed against clinical field isolates of Pf and P. vivax. The slow killing profile and the relative high propensity to develop resistance in vitro (minimum inoculum resistance of 8 × 105 parasites at a selection pressure of 3 × IC50) constitute unfavorable features for treatment of malaria. However, potent blood stage and antischizontal activity are compelling for causal prophylaxis which does not require fast onset of action. Achieving sufficient on-target selectivity appears to be particularly challenging and should be the primary focus during the next steps of optimization of this chemical series. Encouraging preliminary off-target profile and oral efficacy in a humanized murine model of Pf malaria allowed us to conclude that 1-(pyridin-4-yl)pyrrolidin-2-one derivatives represent a promising starting point for the identification of novel antimalarial prophylactic agents that selectively target Plasmodium PRS.


Assuntos
Aminoacil-tRNA Sintetases , Antimaláricos , Malária Falciparum , Malária , Animais , Antimaláricos/farmacologia , Humanos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Camundongos , Plasmodium falciparum
9.
J Med Chem ; 64(5): 2739-2761, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33620219

RESUMO

Malaria control programs continue to be threatened by drug resistance. To identify new antimalarials, we conducted a phenotypic screen and identified a novel tetrazole-based series that shows fast-kill kinetics and a relatively low propensity to develop high-level resistance. Preliminary structure-activity relationships were established including identification of a subseries of related amides with antiplasmodial activity. Assaying parasites with resistance to antimalarials led us to test whether the series had a similar mechanism of action to chloroquine (CQ). Treatment of synchronized Plasmodium falciparum parasites with active analogues revealed a pattern of intracellular inhibition of hemozoin (Hz) formation reminiscent of CQ's action. Drug selections yielded only modest resistance that was associated with amplification of the multidrug resistance gene 1 (pfmdr1). Thus, we have identified a novel chemical series that targets the historically druggable heme polymerization pathway and that can form the basis of future optimization efforts to develop a new malaria treatment.


Assuntos
Amidas/farmacologia , Antimaláricos/farmacologia , Hemoglobinas/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Tetrazóis/farmacologia , Amidas/síntese química , Amidas/farmacocinética , Antimaláricos/síntese química , Antimaláricos/farmacocinética , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Hemeproteínas/antagonistas & inibidores , Células Hep G2 , Humanos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacocinética , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Tetrazóis/síntese química , Tetrazóis/farmacocinética
10.
J Med Chem ; 63(20): 11902-11919, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32945666

RESUMO

Malaria remains one of the most deadly infectious diseases, causing hundreds of thousands of deaths each year, primarily in young children and pregnant mothers. Here, we report the discovery and derivatization of a series of pyrazolo[3,4-b]pyridines targeting Plasmodium falciparum, the deadliest species of the malaria parasite. Hit compounds in this series display sub-micromolar in vitro activity against the intraerythrocytic stage of the parasite as well as little to no toxicity against the human fibroblast BJ and liver HepG2 cell lines. In addition, our hit compounds show good activity against the liver stage of the parasite but little activity against the gametocyte stage. Parasitological profiles, including rate of killing, docking, and molecular dynamics studies, suggest that our compounds may target the Qo binding site of cytochrome bc1.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Pirazóis/farmacologia , Piridinas/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Linhagem Celular , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Pirazóis/síntese química , Pirazóis/química , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade
11.
J Med Chem ; 62(2): 1022-1035, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30562027

RESUMO

Structure-activity relationship studies involving N-aryl-3-trifluoromethyl pyrido[1,2- a]benzimidazoles (PBI) identified several compounds possessing potent in vitro activities against the asexual blood, liver, and gametocyte stages of the Plasmodium parasite with no cross-resistance to chloroquine. Frontrunner lead compounds with good in vitro absorption, distribution, metabolism, and excretion (ADME) profiles were subjected to in vivo proof-of-concept studies in NMRI mice harboring the rodent P. berghei infection. This led to the identification of compounds 10 and 49, effecting 98% and 99.93% reduction in parasitemia with mean survival days of 12 and 14, respectively, at an oral dose of 4 × 50 mg/kg. In vivo pharmacokinetics studies on 10 revealed slow absorption, low volume of distribution, and low clearance profiles. Furthermore, this series displayed a low propensity to inhibit the human ether-a-go-go-related gene (hERG) potassium ion channel whose inhibition is associated with cardiotoxicity.


Assuntos
Antimaláricos/uso terapêutico , Benzimidazóis/química , Malária/tratamento farmacológico , Plasmodium/fisiologia , Animais , Antimaláricos/química , Antimaláricos/metabolismo , Antimaláricos/farmacologia , Benzimidazóis/metabolismo , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Modelos Animais de Doenças , Desenho de Fármacos , Canal de Potássio ERG1/antagonistas & inibidores , Canal de Potássio ERG1/metabolismo , Meia-Vida , Hemeproteínas/antagonistas & inibidores , Hemeproteínas/metabolismo , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária/mortalidade , Malária/patologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium/efeitos dos fármacos , Relação Estrutura-Atividade , Taxa de Sobrevida
12.
J Antimicrob Chemother ; 73(5): 1279-1290, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29420756

RESUMO

Objectives: Novel chemical tools to eliminate malaria should ideally target both the asexual parasites and transmissible gametocytes. Several imidazopyridazines (IMPs) and 2-aminopyridines (2-APs) have been described as potent antimalarial candidates targeting lipid kinases. However, these have not been extensively explored for stage-specific inhibition of gametocytes in Plasmodium falciparum parasites. Here we provide an in-depth evaluation of the gametocytocidal activity of compounds from these chemotypes and identify novel starting points for dual-acting antimalarials. Methods: We evaluated compounds against P. falciparum gametocytes using several assay platforms for cross-validation and stringently identified hits that were further profiled for stage specificity, speed of action and ex vivo efficacy. Physicochemical feature extraction and chemogenomic fingerprinting were applied to explore the kinase inhibition susceptibility profile. Results: We identified 34 compounds with submicromolar activity against late stage gametocytes, validated across several assay platforms. Of these, 12 were potent at <100 nM (8 were IMPs and 4 were 2-APs) and were also active against early stage gametocytes and asexual parasites, with >1000-fold selectivity towards the parasite over mammalian cells. Front-runner compounds targeted mature gametocytes within 48 h and blocked transmission to mosquitoes. The resultant chemogenomic fingerprint of parasites treated with the lead compounds revealed the importance of targeting kinases in asexual parasites and gametocytes. Conclusions: This study encompasses an in-depth evaluation of the kinase inhibitor space for gametocytocidal activity. Potent lead compounds have enticing dual activities and highlight the importance of targeting the kinase superfamily in malaria elimination strategies.


Assuntos
Aminopiridinas/farmacologia , Antimaláricos/farmacologia , Fosfotransferases/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Aminopiridinas/química , Aminopiridinas/isolamento & purificação , Antimaláricos/química , Antimaláricos/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Concentração Inibidora 50 , Testes de Sensibilidade Parasitária , Plasmodium falciparum/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/isolamento & purificação
13.
J Med Chem ; 60(4): 1432-1448, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28094524

RESUMO

Further structure-activity relationship (SAR) studies on the recently identified pyrido[1,2-a]benzimidazole (PBI) antimalarials have led to the identification of potent, metabolically stable compounds with improved in vivo oral efficacy in the P. berghei mouse model and additional activity against parasite liver and gametocyte stages, making them potential candidates for preclinical development. Inhibition of hemozoin formation possibly contributes to the mechanism of action.


Assuntos
Antimaláricos/química , Antimaláricos/uso terapêutico , Benzimidazóis/química , Benzimidazóis/uso terapêutico , Malária/tratamento farmacológico , Malária/parasitologia , Plasmodium berghei/efeitos dos fármacos , Animais , Antimaláricos/farmacocinética , Antimaláricos/farmacologia , Benzimidazóis/farmacocinética , Benzimidazóis/farmacologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Masculino , Camundongos , Plasmodium berghei/crescimento & desenvolvimento , Relação Estrutura-Atividade
14.
J Med Chem ; 58(21): 8713-22, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26502160

RESUMO

Toward improving pharmacokinetics, in vivo efficacy, and selectivity over hERG, structure-activity relationship studies around the central core of antimalarial imidazopyridazines were conducted. This study led to the identification of potent pyrazolopyridines, which showed good in vivo efficacy and pharmacokinetics profiles. The lead compounds also proved to be very potent in the parasite liver and gametocyte stages, which makes them of high interest.


Assuntos
Antimaláricos/química , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Pirazóis/química , Pirazóis/uso terapêutico , Piridinas/química , Piridinas/uso terapêutico , Animais , Antimaláricos/farmacocinética , Antimaláricos/farmacologia , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Fígado/parasitologia , Malária/parasitologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Camundongos , Pirazóis/farmacocinética , Pirazóis/farmacologia , Piridinas/farmacocinética , Piridinas/farmacologia , Ratos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...