Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(33): 4491-4494, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38567466

RESUMO

Heating tert-butyl-tetraline with [(p-cymene)RuCl2]2 produces the racemic complex [(arene)RuCl2]2, which can be separated into enantiomers by chromatography of its diastereomeric adducts with chiral phosphine ligand. The resolved chiral complex catalyzes C-H activation of N-methoxy-benzamides and their annulation with N-vinyl-pivaloyl amide giving dihydroisoquinolones in 50-80% yields and with 40-80% enantiomeric excess.

2.
Nat Commun ; 14(1): 5013, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591856

RESUMO

The synthesis of amides is a key technology for the preparation of fine and bulk chemicals in industry, as well as the manufacture of a plethora of daily life products. Furthermore, it constitutes a central bond-forming methodology for organic synthesis and provides the basis for the preparation of numerous biomolecules. Here, we present a robust methodology for amide synthesis compared to traditional amidation reactions: the reductive amidation of esters with nitro compounds under additives-free conditions. In the presence of a specific heterogeneous nickel-based catalyst a wide range of amides bearing different functional groups can be selectively prepared in a more step-economy way compared to previous syntheses. The potential value of this protocol is highlighted by the synthesis of drugs, as well as late-stage modifications of bioactive compounds. Based on control experiments, material characterizations, and DFT computations, we suggest metallic nickel and low-valent Ti-species to be crucial factors that makes this direct amide synthesis possible.

3.
Chem Commun (Camb) ; 58(47): 6709-6712, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35593764

RESUMO

Asymmetric cyclopropanation of alkenes by aryldiazoacetates was achieved using the readily-available racemic (diene)rhodium complex in combination with the chiral oxazoline-phenol ligand, which acts as the chiral poison and selectively inhibits one of the enantiomers of the catalyst. This approach eliminates a common problematic step of the synthesis of chiral catalysts.


Assuntos
Ródio , Alcenos , Catálise , Elétrons , Polienos , Estereoisomerismo
4.
Angew Chem Int Ed Engl ; 60(34): 18712-18720, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34057807

RESUMO

A new method for the synthesis of chiral diene rhodium catalysts is introduced. The readily available racemic tetrafluorobenzobarrelene complexes [(R2 -TFB)RhCl]2 were separated into two enantiomers via selective coordination of one of them with the auxiliary S-salicyl-oxazoline ligand. One of the resulting chiral complexes with an exceptionally bulky diene ligand [(R,R-iPr2 -TFB)RhCl]2 was an efficient catalyst for the asymmetric insertion of diazoesters into B-H and Si-H bonds giving the functionalized organoboranes and silanes with high yields (79-97 %) and enantiomeric purity (87-98 % ee). The stereoselectivity of separation via auxiliary ligand and that of the catalytic reaction was predicted by DFT calculations.

5.
Angew Chem Int Ed Engl ; 57(26): 7714-7718, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29624840

RESUMO

The rapid development of enantioselective C-H activation reactions has created a demand for new types of catalysts. Herein, we report the synthesis of a novel planar-chiral rhodium catalyst [(C5 H2t Bu2 CH2t Bu)RhI2 ]2 in two steps from commercially available [(cod)RhCl]2 and tert-butylacetylene. Pure enantiomers of the catalyst were obtained through separation of its diastereomeric adducts with natural (S)-proline. The catalyst promoted enantioselective reactions of aryl hydroxamic acids with strained alkenes to give dihydroisoquinolones in high yields (up to 97 %) and with good stereoselectivity (up to 95 % ee).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...