Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 352, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589374

RESUMO

We assembled the first gridded burned area (BA) database of national wildfire data (ONFIRE), a comprehensive and integrated resource for researchers, non-government organisations, and government agencies analysing wildfires in various regions of the Earth. We extracted and harmonised records from different regions and sources using open and reproducible methods, providing data in a common framework for the whole period available (starting from 1950 in Australia, 1959 in Canada, 1985 in Chile, 1980 in Europe, and 1984 in the United States) up to 2021 on a common 1° × 1° grid. The data originate from national agencies (often, ground mapping), thus representing the best local expert knowledge. Key opportunities and limits in using this dataset are discussed as well as possible future expansions of this open-source approach that should be explored. This dataset complements existing gridded BA data based on remote sensing and offers a valuable opportunity to better understand and assess fire regime changes, and their drivers, in these regions. The ONFIRE database can be freely accessed at https://zenodo.org/record/8289245 .

2.
Sci Data ; 11(1): 332, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575621

RESUMO

Globe-LFMC 2.0, an updated version of Globe-LFMC, is a comprehensive dataset of over 280,000 Live Fuel Moisture Content (LFMC) measurements. These measurements were gathered through field campaigns conducted in 15 countries spanning 47 years. In contrast to its prior version, Globe-LFMC 2.0 incorporates over 120,000 additional data entries, introduces more than 800 new sampling sites, and comprises LFMC values obtained from samples collected until the calendar year 2023. Each entry within the dataset provides essential information, including date, geographical coordinates, plant species, functional type, and, where available, topographical details. Moreover, the dataset encompasses insights into the sampling and weighing procedures, as well as information about land cover type and meteorological conditions at the time and location of each sampling event. Globe-LFMC 2.0 can facilitate advanced LFMC research, supporting studies on wildfire behaviour, physiological traits, ecological dynamics, and land surface modelling, whether remote sensing-based or otherwise. This dataset represents a valuable resource for researchers exploring the diverse LFMC aspects, contributing to the broader field of environmental and ecological research.

3.
Sci Total Environ ; 920: 170599, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38309343

RESUMO

Global coarse-resolution (≥250 m) burned area (BA) products have been used to estimate fire related forest loss, but we hypothesised that a significant part of fire impacts might be undetected because of the underestimation of small fires (<100 ha), especially in the tropics. In this paper, we analysed fire-related forest cover loss in sub-Saharan Africa (SSA) for 2016 and 2019 based on a BA product generated from Sentinel-2 data (20 m), which was observed to have significantly lower omission errors than the coarse-resolution BA products. Using these higher resolution BA datasets, we found that fires contribute to >46 % of total forest losses over SSA, more than twice the estimates from coarse-resolution BA products. In addition, burned forest areas showed more than twofold likelihood of subsequent loss compared to unburned ones. In moist tropical forests, the most fire-vulnerable biome, burning had even six times more chance to precede forest loss than unburned areas. We also found that fire-related characteristics, such as fire size and season, and forest fragmentation play a major role in the determination of tree cover fate. Our results reveal that medium-resolution BA detects more fires in late fire season, which tend to have higher impact on forests than early season ones. On the other hand, small fires represented the major driver of forest loss after fires and the vast majority of these losses occur in fragmented landscapes near forest edge (<260 m). Therefore medium-resolution BA products are required to obtain a more accurate evaluation of fire impacts in tropical ecosystems.

4.
Sci Total Environ ; 917: 170443, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38296061

RESUMO

Analysing wildfire initiation patterns and identifying their primary drivers is essential for the development of more efficient fire prevention strategies. However, such analyses have traditionally been conducted at local or national scales, hindering cross-border comparisons and the formulation of broad-scale policy initiatives. In this study, we present an analysis of the spatial variability of wildfire initiations across Europe, focusing specifically on moderate to large fires (> 100 ha), and examining the influence of both human and climatic factors on initiation areas. We estimated drivers of fire initiation using machine learning algorithms, specifically Random Forest (RF), covering the majority of the European territory (referred to as the "ET scale"). The models were trained using data on fire initiations extracted from a satellite burned area product, comprising fires occurring from 2001 to 2019. We developed six RF models: three considering all fires larger than 100 ha, and three focused solely on the largest events (> 1000 ha). Models were developed using climatic and human predictors separately, as well as both types of predictors mixed together. We found that both climatic and mixed models demonstrated moderate predictive capacity, with AUC values ranging from 79 % to 81 %; while models based only on human variables have had poor predictive capacity (AUC of 60 %). Feature importance analysis, using Shapley Additive Explanations (SHAP), allowed us to assess the primary drivers of wildfire initiations across the European Territory. Aridity and evapotranspiration had the strongest effect on fire initiation. Among human variables, population density and aging had considerable effects on fire initiation, the former with a strong effect in mixed models estimating large fires, while the latter had a more important role in the prediction of very large fires. Distance to roads and forest-agriculture interfaces were also relevant in some initiation models. A better understanding of drivers of main fire events should help designing European forest fire management strategies, particularly in the light of growing importance of climate change, as it would affect both fire severity and areas at risk. Factors of fire initiation should also be part of a comprehensive approach for fire risk assessment, reduction and adaption, contributing to more effective wildfire management and mitigation across the continent.

5.
Science ; 379(6635): 912-917, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862792

RESUMO

Extreme wildfires are becoming more common and increasingly affecting Earth's climate. Wildfires in boreal forests have attracted much less attention than those in tropical forests, although boreal forests are one of the most extensive biomes on Earth and are experiencing the fastest warming. We used a satellite-based atmospheric inversion system to monitor fire emissions in boreal forests. Wildfires are rapidly expanding into boreal forests with emerging warmer and drier fire seasons. Boreal fires, typically accounting for 10% of global fire carbon dioxide emissions, contributed 23% (0.48 billion metric tons of carbon) in 2021, by far the highest fraction since 2000. 2021 was an abnormal year because North American and Eurasian boreal forests synchronously experienced their greatest water deficit. Increasing numbers of extreme boreal fires and stronger climate-fire feedbacks challenge climate mitigation efforts.

6.
Sci Total Environ ; 845: 157139, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35817109

RESUMO

Coarse resolution sensors are not very sensitive at detecting small fire patches, making current estimations of global burned areas (BA) very conservative. Using medium or high-resolution sensors to generate BA products becomes then a priority, particularly in areas where fires tend to be small and frequent. Building on previous work that developed a small fire dataset (SFD) for Sub-Saharan Africa for 2016, this paper presents a new version of the dataset for 2019 using the two Sentinel-2 satellites (A and B) and VIIRS active fires. Total estimated BA was 4.8 Mkm2. This value was much higher than estimations from two global, coarser-spatial resolution BA products based on MODIS data for the same area and period: 80 % greater than estimates from FireCCI51 (based on MODIS 250 m bands) and 120 % larger than MCD64A1 (based on MODIS 500 m bands). The main differences were observed in those months with higher fire occurrence (November to January for the Northern Hemisphere regions and June to September for the Southern Hemisphere ones). Accuracy assessment of the SFD product was based on a novel sampling strategy designed to obtain independent fire reference perimeters. Validation results showed remarkable high accuracy values comparing to existing global BA products. Overall omission errors (OE) were estimated as 8.5 %, commission errors (CE) as 15.0 %, with a Dice Coefficient of 87.7 %. All of these estimations implied significant improvements over the global, coarser spatial resolution BA products (OE > 50 % and CE > 20 % for the same area and period), as well as over the previous SFD product for 2016 of the same area, generated from a single Sentinel-2 satellite and MODIS active fires (OE = 26.5 % and CE = 19.3 %). Temporal accuracies greatly increased as well with the new product, with 92.5 % of fires detected within the first 10 days of occurrence.


Assuntos
Incêndios , África Subsaariana
7.
Sci Adv ; 7(39): eabh2646, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34559570

RESUMO

Satellites have detected a global decline in burned area of grassland, coincident with a small increase in burned forest area. These contrasting trends have been reported in earlier literature; however, less is known of their impacts on global fire emission trends due to the scarcity of direct observations. We use an atmospheric inversion system to show that global fire emissions have been stable or slightly decreasing despite the substantial decline in global burned area over the past two decades caused by the carbon dioxide emission increase from forest fires offsetting the decreasing emissions from grass and shrubland fires. Forest fires are larger carbon dioxide sources per unit area burned than grassland fires, with a slow or incomplete follow-up recovery­sometimes no recovery due to degradation and deforestation. With fires expanding over forest areas, the slow recovery of carbon dioxide uptake over burned forest lands weakens land sink capacity, implying positive feedback on climate change.

8.
Sci Total Environ ; 779: 146361, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34030254

RESUMO

Biomass burning is one of the most critical factors impacting vegetation and atmospheric trends, with important societal implications, particularly when extreme weather conditions occur. Trends and factors of burned area (BA) have been analysed at regional and global scales, but little effort has been dedicated to study the interannual variability. This paper aimed to better understand factors explaining this variation, under the assumption that the more human control of fires the more frequently they occur, as burnings will be less dependent of weather cycles. Interannual variability of BA was estimated from the coefficient of variation of the annual BA (BA_CV) estimated from satellite data at 250 m, covering the period from 2001 to 2018. These data and the explanatory variables were resampled at 0.25-degree resolution for global analysis. Relations between this variable and explanatory factors, including human and climate drivers, were estimated using Random Forest (RF) and generalized additive models (GAM). BA_CV was negatively related to BA_Mean, implying that areas with higher average BA have lower variability as well. Interannual BA variability decreased when maximum temperature (TMAX) and actual and potential evapotranspiration (AET, PET) increased, cropland and livestock density increased and the human development index (HDI) values decreased. GAM models indicated interesting links with AET, PET and precipitation, with negative relation with BA_CV for the lower ranges and positive for the higher ones, the former indicating fuel limitations of fire activity, and the latter climate constrains. For the global RF model, TMAX, AET and HDI were the main drivers of interannual variability. As originally hypothesised, BA_CV was more dependent on human factors (HDI) in those areas with medium to large BA occurrence, particularly in tropical Africa and Central Asia, while climatic factors were more important in boreal regions, but also in the tropical regions of Australia and South America.


Assuntos
Clima , Incêndios , África , Austrália , Biomassa , Humanos , América do Sul
9.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619088

RESUMO

Fires are a major contributor to atmospheric budgets of greenhouse gases and aerosols, affect soils and vegetation properties, and are a key driver of land use change. Since the 1990s, global burned area (BA) estimates based on satellite observations have provided critical insights into patterns and trends of fire occurrence. However, these global BA products are based on coarse spatial-resolution sensors, which are unsuitable for detecting small fires that burn only a fraction of a satellite pixel. We estimated the relevance of those small fires by comparing a BA product generated from Sentinel-2 MSI (Multispectral Instrument) images (20-m spatial resolution) with a widely used global BA product based on Moderate Resolution Imaging Spectroradiometer (MODIS) images (500 m) focusing on sub-Saharan Africa. For the year 2016, we detected 80% more BA with Sentinel-2 images than with the MODIS product. This difference was predominately related to small fires: we observed that 2.02 Mkm2 (out of a total of 4.89 Mkm2) was burned by fires smaller than 100 ha, whereas the MODIS product only detected 0.13 million km2 BA in that fire-size class. This increase in BA subsequently resulted in increased estimates of fire emissions; we computed 31 to 101% more fire carbon emissions than current estimates based on MODIS products. We conclude that small fires are a critical driver of BA in sub-Saharan Africa and that including those small fires in emission estimates raises the contribution of biomass burning to global burdens of (greenhouse) gases and aerosols.


Assuntos
Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental , Imagens de Satélites , Incêndios Florestais , África , Monitoramento Ambiental/métodos , Incêndios , Estações do Ano
12.
Sci Data ; 6(1): 155, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434899

RESUMO

Globe-LFMC is an extensive global database of live fuel moisture content (LFMC) measured from 1,383 sampling sites in 11 countries: Argentina, Australia, China, France, Italy, Senegal, Spain, South Africa, Tunisia, United Kingdom and the United States of America. The database contains 161,717 individual records based on in situ destructive samples used to measure LFMC, representing the amount of water in plant leaves per unit of dry matter. The primary goal of the database is to calibrate and validate remote sensing algorithms used to predict LFMC. However, this database is also relevant for the calibration and validation of dynamic global vegetation models, eco-physiological models of plant water stress as well as understanding the physiological drivers of spatiotemporal variation in LFMC at local, regional and global scales. Globe-LFMC should be useful for studying LFMC trends in response to environmental change and LFMC influence on wildfire occurrence, wildfire behavior, and overall vegetation health.


Assuntos
Folhas de Planta/fisiologia , Água , Incêndios Florestais , Algoritmos , Bases de Dados Factuais , Planeta Terra , Previsões , Tecnologia de Sensoriamento Remoto
13.
14.
J Environ Manage ; 90(2): 1241-52, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18723267

RESUMO

This paper identifies human factors associated with high forest fire risk in Spain and analyses the spatial distribution of fire occurrence in the country. The spatial units were 6,066 municipalities of the Spanish peninsular territory and Balearic Islands. The study covered a 13-year series of fire occurrence data. One hundred and eight variables were generated and input to a dedicated Geographic Information System (GIS) to model different factors related to fire ignition. After exploratory analysis, 29 were selected to build a predictive model of human fire ignition using logistic regression analysis. The binary model estimated the probability of high or low occurrence of forest fires, as defined by an ignition danger index that is currently used by the Spanish forest service (number of fires divided by forest area in each municipality). Thirteen explanatory variables were identified by the model. They were related to agricultural landscape fragmentation, agricultural abandonment and development processes. The prediction agreement found between the model binary outputs and the historical fire data was 85.3% for the model building dataset (60% of municipalities). A slightly lower predictive power (76.2%) was found for the validation data (the remaining 40%). The probabilistic output of the logistic was significantly related to the raw ignition index (Spearman correlation of 0.710) used by the Spanish Forest Service. Therefore, the model can be considered a good predictor of human-caused fire risk, aiding spatial decisions related to prevention planning in Spanish municipalities.


Assuntos
Incêndios/prevenção & controle , Técnicas de Planejamento , Humanos , Espanha
15.
Ecol Appl ; 18(1): 64-79, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18372556

RESUMO

This paper presents results of the AQL2004 project, which has been develope within the GOFC-GOLD Latin American network of remote sensing and forest fires (RedLatif). The project intended to obtain monthly burned-land maps of the entire region, from Mexico to Patagonia, using MODIS (moderate-resolution imaging spectroradiometer) reflectance data. The project has been organized in three different phases: acquisition and preprocessing of satellite data; discrimination of burned pixels; and validation of results. In the first phase, input data consisting of 32-day composites of MODIS 500-m reflectance data generated by the Global Land Cover Facility (GLCF) of the University of Maryland (College Park, Maryland, U.S.A.) were collected and processed. The discrimination of burned areas was addressed in two steps: searching for "burned core" pixels using postfire spectral indices and multitemporal change detection and mapping of burned scars using contextual techniques. The validation phase was based on visual analysis of Landsat and CBERS (China-Brazil Earth Resources Satellite) images. Validation of the burned-land category showed an agreement ranging from 30% to 60%, depending on the ecosystem and vegetation species present. The total burned area for the entire year was estimated to be 153 215 km2. The most affected countries in relation to their territory were Cuba, Colombia, Bolivia, and Venezuela. Burned areas were found in most land covers; herbaceous vegetation (savannas and grasslands) presented the highest proportions of burned area, while perennial forest had the lowest proportions. The importance of croplands in the total burned area should be taken with reserve, since this cover presented the highest commission errors. The importance of generating systematic products of burned land areas for different ecological processes is emphasized.


Assuntos
Conservação dos Recursos Naturais , Sistemas de Informação Geográfica , América Latina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...