Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 47(14): 3463-3466, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35838704

RESUMO

We demonstrate a room-temperature Ti:Sapphire (Ti:Sa) amplifier that uses a cross pump-seed geometry (cross-thin-slab) to generate 30-mJ output pulses at 0.5-kHz repetition rate, and 25 mJ at 1 kHz when pumped by 100-mJ, 515-nm pulses from a diode-pumped Yb:YAG laser. The geometry allows to maintain a crystal temperature of ∼30°C using cooling water at 10°C. The amplifier is an attractive solution for use in the first stages of amplification in high peak and high average power chirped pulse amplification laser systems.

2.
Opt Express ; 27(2): 1226-1235, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30696192

RESUMO

The spectral phase shift of broadband amplified pulses, induced by population inversion, was measured in Ti:Sapphire at different pump fluence values. The measurement was performed for two orthogonal polarization directions and at two different crystal temperatures of 296 K and 30 K. Zero shifts and sign changes were observed in the spectral phase, which are connected to the gain spectrum of the crystal. The electronic refractive index changes were also numerically calculated by the Kramers-Kronig theory. The results are highly important for achieving sub-10 fs pulse duration and phase stability in the next generation of Ti:Sapphire-based laser systems.

3.
Opt Express ; 26(6): 7516-7527, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29609306

RESUMO

The scheme of cascaded extraction optical parametric amplifier (CE-OPA) has been proposed as a final amplifier for high peak power laser systems. 4D numerical simulations show that conversion efficiency of a CE-OPA system pumped with a temporal Gaussian pump pulse is as close to the theoretical limit of quantum efficiency as a conventional OPA pumped with temporal flat-top pump pulse. The CE-OPA system is also similar to the conventional scheme in output energy stability and alignment sensitivity of the phase-matching angles, too. However, with the use of the CE-OPA scheme, the requirement of pump pulse shaping can be relaxed, leading to an overall higher plug in efficiency as well as compact design.

4.
Appl Opt ; 57(5): 1212-1217, 2018 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-29469866

RESUMO

An optical trap for storing femtosecond laser pulses to enhance the interaction effectiveness with optically thin targets is being proposed and investigated. Presently, we studied the trapping of 10-200 fs laser pulses of wavelength 800 nm, 1 µJ energy per pulse, and 10 Hz repetition rate. To compensate the optical losses in the trap, a Ti: Sapphire crystal as an amplifying medium is being considered, which should be synchronously pumped by the second harmonic of the Nd: YAG laser. Due to the propagation of the short pulses through optical trap components, group velocity dispersion introduces a significant broadening in pulse duration. To compensate for this broadening, a chirped mirror with suitable parameters is being proposed. An increase of the average power of the laser pulse in the optical trap that includes an amplifying medium (Ti: Sapphire crystal) by a factor of 805 compared to a single passage of the laser pulse was derived. It should be possible to store the laser pulse in the optical trap for >4 µs with constant power and with a repetition rate of up to 250 MHz.

5.
Opt Express ; 24(23): 25974-25982, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27857336

RESUMO

We developed an improved approach to calculate the Fourier transform of signals with arbitrary large quadratic phase which can be efficiently implemented in numerical simulations utilizing Fast Fourier transform. The proposed algorithm significantly reduces the computational cost of Fourier transform of a highly chirped and stretched pulse by splitting it into two separate transforms of almost transform limited pulses, thereby reducing the required grid size roughly by a factor of the pulse stretching. The application of our improved Fourier transform algorithm in the split-step method for numerical modeling of CPA and OPCPA shows excellent agreement with standard algorithms.

6.
Opt Lett ; 41(13): 3017-20, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27367090

RESUMO

The combination of the extraction during pumping (EDP) amplification scheme and the thin disk (TD) technology has been successfully applied to the Ti:sapphire (Ti:sa) laser medium for the first time, to the best of our knowledge. In a proof-of-principle experiment, we demonstrate high energy broadband amplification in a room temperature water cooled EDP-TD head of stretched femtosecond pulses at a 10 Hz repetition rate, instead of performing a cryogenically cooled traditional multi-pass scheme. Hence, the EDP-TD combination can overcome the limits associated with thermal effects and transverse amplified spontaneous emission, enabling Ti:sa laser systems to have a petawatt peak and hundreds of watts of average power.

7.
Opt Express ; 24(4): 3721-33, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26907029

RESUMO

Combination of the scheme of extraction during pumping (EDP) and the Thin Disk (TD) technology is presented to overcome the limitations associated with thermal cooling of crystal and transverse amplified spontaneous emission in high average power laser systems based on Ti:Sa amplifiers. The optimized design of high repetition rate 1-10 PW Ti:Sapphire EDP-TD power amplifiers are discussed, including their thermal dynamic behavior.

8.
Opt Lett ; 41(1): 25-8, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26696149

RESUMO

The bandwidth of titanium sapphire (Ti:Sa) laser amplifiers can be greatly broadened with shaping the spectral gain via engineering the spectral polarization of amplified pulses and using both π- and σ-cross-sections. In a proof-of-principle experiment, an amplification bandwidth exceeding 85 nm at a gain of 200 was demonstrated. The accompanying computer modeling revealed that a polarization-encoded chirped pulse amplification scheme can be scaled to higher energies and thus can produce multijoule pulses with bandwidth close to 200 nm, making few-cycle petawatt Ti:Sa systems feasible.

9.
Phys Plasmas ; 17(4)2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20838426

RESUMO

The propagation of ultraintense laser pulses through matter is connected with the generation of strong moving magnetic fields in the propagation channel as well as the formation of a thin ion filament along the axis of the channel. Upon exiting the plasma the magnetic field displaces the electrons at the back of the target, generating a quasistatic electric field that accelerates and collimates ions from the filament. Two dimensional particle-in-cell simulations show that a 1 PW laser pulse tightly focused on a near-critical density target is able to accelerate protons up to an energy of 1.3 GeV. Scaling laws and optimal conditions for proton acceleration are established considering the energy depletion of the laser pulse.

10.
Appl Phys Lett ; 94(20): 201117, 2009 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-19654882

RESUMO

A relativistic plasma shutter technique is proposed and tested to remove the sub-100 ps pedestal of a high-intensity laser pulse. The shutter is an ultrathin foil placed before the target of interest. As the leading edge of the laser ionizes the shutter material it will expand into a relativistically underdense plasma allowing for the peak pulse to propagate through while rejecting the low intensity pedestal. An increase in the laser temporal contrast is demonstrated by measuring characteristic signatures in the accelerated proton spectra and directionality from the interaction of 30 TW pulses with ultrathin foils along with supporting hydrodynamic and particle-in-cell simulations.

11.
Med Phys ; 35(5): 1770-6, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18561651

RESUMO

Proton acceleration by high-intensity laser pulses from ultrathin foils for hadron therapy is discussed. With the improvement of the laser intensity contrast ratio to 10(-1) achieved on the Hercules laser at the University of Michigan, it became possible to attain laser-solid interactions at intensities up to 10(22) W/cm2 that allows an efficient regime of laser-driven ion acceleration from submicron foils. Particle-in-cell (PIC) computer simulations of proton acceleration in the directed Coulomb explosion regime from ultrathin double-layer (heavy ions/light ions) foils of different thicknesses were performed under the anticipated experimental conditions for the Hercules laser with pulse energies from 3 to 15 J, pulse duration of 30 fs at full width half maximum (FWHM), focused to a spot size of 0.8 microm (FWHM). In this regime heavy ions expand predominantly in the direction of laser pulse propagation enhancing the longitudinal charge separation electric field that accelerates light ions. The dependence of the maximum proton energy on the foil thickness has been found and the laser pulse characteristics have been matched with the thickness of the target to ensure the most efficient acceleration. Moreover, the proton spectrum demonstrates a peaked structure at high energies, which is required for radiation therapy. Two-dimensional PIC simulations show that a 150-500 TW laser pulse is able to accelerate protons up to 100-220 MeV energies.


Assuntos
Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/instrumentação , Radioterapia/métodos , Simulação por Computador , Desenho de Equipamento , Humanos , Íons , Lasers , Modelos Teóricos , Aceleradores de Partículas , Radioterapia/instrumentação , Dosagem Radioterapêutica , Radioterapia Conformacional/métodos , Fatores de Tempo
12.
Appl Opt ; 47(12): 1968-72, 2008 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-18425168

RESUMO

A Nd:glass laser based on a novel design delivers up to 120 J energy pulses with a quasi-flat-top spatial profile at a 0.1 Hz repetition rate. The laser output is frequency-doubled with 50% efficiency and used to pump Ti:sapphire amplifiers. The developed design is perspective for use in the currently contemplated next step in ultra-high-intensity laser development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...