Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 2636, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788331

RESUMO

A mathematical description of the thermal degradation of spongin-based scaffolds is given. The Arrhenius integral was evaluated using the inverse problem approach, in which the unknown values were the activation energy EA, the pre-exponential factor A, and the model function f(α) characterizing the physical process. The form of f(α) was determined and the values of the parameters EA, A and TS were evaluated in detail. Moreover, the function f(α) assessed in this study was compared with classical solid-state model functions. Finally, the mean square minimization approach was used to solve the inverse problem with unknown function f(α) and pre-exponential constant A. Likewise, the approximation of f(α) with 6th- and 7th-degree polynomials was used to obtain numerical values of EA and A. This study evaluated the inverse problem approach for the Arrhenius equation. These investigations provide new insight into the description of the thermal degradation of spongin-based scaffolds.

2.
Cytometry A ; 87(3): 190-4, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25483307

RESUMO

Small vertebrate model organisms have recently gained popularity as attractive experimental models that enhance our understanding of human tissue and organ development. Despite a large body of evidence using optical spectroscopy for the characterization of small model organism on chip-based devices, no attempts have been so far made to interface microfabricated technologies with environmental scanning electron microscopy (ESEM). Conventional scanning electron microscopy requires high vacuum environments and biological samples must be, therefore, submitted to many preparative procedures to dehydrate, fix, and subsequently stain the sample with gold-palladium deposition. This process is inherently low-throughput and can introduce many analytical artifacts. This work describes a proof-of-concept microfluidic chip-based system for immobilizing zebrafish larvae for ESEM imaging that is performed in a gaseous atmosphere, under low vacuum mode and without any need for sample staining protocols. The microfabricated technology provides a user-friendly and simple interface to perform ESEM imaging on zebrafish larvae. Presented lab-on-a-chip device was fabricated using a high-speed infrared laser micromachining in a biocompatible poly(methyl methacrylate) thermoplastic. It consisted of a reservoir with multiple semispherical microwells designed to hold the yolk of dechorionated zebrafish larvae. Immobilization of the larvae was achieved by a gentle suction generated during blotting of the medium. Trapping region allowed for multiple specimens to be conveniently positioned on the chip-based device within few minutes for ESEM imaging.


Assuntos
Células Imobilizadas/ultraestrutura , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Peixe-Zebra , Animais , Larva , Microscopia Eletrônica de Varredura/métodos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA