Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 11(10): 2397-2405, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38470088

RESUMO

Black phosphorus (BP) field-effect transistors with ultrathin channels exhibit unipolar p-type electrical conduction over a wide range of temperatures and pressures. Herein, we study a device that exhibits mobility up to 100 cm2 V-1 s-1 and a memory window up to 1.3 µA. Exposure to a supercontinuum white light source reveals that negative photoconductivity (NPC) and positive photoconductivity (PPC) coexist in the same device. Such behavior is attributed to the chemisorbed O2 molecules, with a minor role of physisorbed H2O molecules. The coexistence of NPC and PPC can be exploited in neuromorphic vision sensors, requiring the human eye retina to process the optical signals through alerting and protection (NPC), adaptation (PPC), followed by imaging and processing. Our results open new avenues for the use of BP and other two-dimentional (2D) semiconducting materials in transistors, memories, and neuromorphic vision sensors for advanced applications in robotics, self-driving cars, etc.

2.
Materials (Basel) ; 16(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37297195

RESUMO

Polyvinyl alcohol is the most commercially water-soluble biodegradable polymer, and it is in use for a wide range of applications. It shows good compatibility with most inorganic/organic fillers, and enhanced composites may be prepared without the need to introduce coupling agents and interfacial modifiers. The patented high amorphous polyvinyl alcohol (HAVOH), commercialized with the trade name G-Polymer, can be easily dispersed in water and melt processed. HAVOH is particularly suitable for extrusion and can be used as a matrix to disperse nanocomposites with different properties. In this work, the optimization of the synthesis and characterization of HAVOH/reduced graphene oxide (rGO) nanocomposite obtained by the solution blending process of HAVOH and Graphene Oxide (GO) water solutions and 'in situ' reduction of GO is studied. The produced nanocomposite presents a low percolation threshold (~1.7 wt%) and high electrical conductivity (up to 11 S/m) due to the uniform dispersion in the polymer matrix as a result of the solution blending process and the good reduction level of GO. In consideration of HAVOH processability, the conductivity obtained by using rGO as filler, and the low percolation threshold, the nanocomposite presented here is a good candidate for the 3D printing of a conductive structure.

3.
Materials (Basel) ; 14(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071533

RESUMO

TiO2 in the form of nanoparticles is characterized by high photocatalytic activity and high resistance to oxidation, making it an excellent candidate to realize coatings for improving the corrosion resistance of aluminium surfaces. Different coating technologies have been proposed over the years, which often involve the use of toxic compounds and very high temperatures. In this work, an alternative and novel one-step method for the coating of aluminium alloy surfaces with titania nanoparticles is presented. The method is based on the combination of aerosol flame synthesis and direct thermophoretic deposition and allows to produce nanostructured thin coating layers of titania with different features. Specifically, 3.5 nm anatase nanoparticles were synthesized and deposited onto aluminium alloy AA2024 samples. The thickness of the coating was changed by modifying the total deposition time. A thermal annealing treatment was developed to improve the adhesion of nano-titania on the substrates, and the morphology and structures of the coatings were characterized using (ultra violet) UV-vis absorption, scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. The corrosion resistance behavior of the coatings was evaluated by means of electrochemical polarization measurements, coupled with a numerical analysis using COMSOL software. Both the experimental and numerical electrochemical polarization curves showed a significant increase in the corrosion potential of coated substrates with respect to the bare aluminium and a decrease in the current density. The coatings obtained with higher deposition time and greater thickness showed the best performances in terms of the resistance of the aluminium surfaces to corrosion.

4.
J Nanosci Nanotechnol ; 18(2): 1176-1185, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448554

RESUMO

Decoration with silver nanoparticles was obtained by coating graphene with a polydopamine layer, able to induce spontaneous metallic nanoparticles formation without any specific chemical interfacial modifier, neither using complex instrumentation. The choice of dopamine was inspired by the composition of adhesive proteins in mussels, related to their robust attach to solid surfaces. The synthesis procedure started from graphite and involved eco-friendly compounds, such as Vitamin C and glucose as reducing agent and water as reaction medium. Silver decorated graphene was inserted as secondary nanofiller in the formulation of a reference conductive adhesive based on epoxy resin and silver flakes. A wide characterization of the intermediate materials obtained along the step procedure for the adhesive preparation was carried out by several techniques. We have found that the presence of nanofiller yields, in addition to an improvement of the thermal conductivity (up to 7.6 W/m · K), a dramatic enhancement of the electrical conductivity of the adhesive. In particular, starting from 3 · 102 S/cm of the reference adhesive, we obtained a value of 4 · 104 S/cm at a nanofiller concentration of 11.5 wt%. The combined double filler conductivity was evaluated by Zallen's model. The effect of the temperature on the resistivity of the adhesive has been also studied.

5.
J Environ Sci (China) ; 54: 268-276, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28391938

RESUMO

A novel visible light-active photocatalyst formulation (NdT/OP) was obtained by supporting N-doped TiO2 (NdT) particles on up-conversion luminescent organic phosphors (OP). The photocatalytic activity of such catalysts was evaluated for the mineralization process of spiramycin in aqueous solution. The effect of NdT loading in the range 15-60wt.% on bulk and surface characteristics of NdT/OP catalysts was investigated by several chemico-physical characterization techniques. The photocatalytic performance of NdT/OP catalysts in the removal of spyramicin from aqueous solution was assessed through photocatalytic tests under visible light irradiation. Total organic carbon (TOC) of aqueous solution, and CO and CO2 gas concentrations evolved during the photodegradation were analyzed. A dramatic enhancement of photocatalytic activity of the photostructured visible active NdT/OP catalysts, compared to NdT catalyst, was observed. Only CO2 was detected in gas-phase during visible light irradiation, proving that the photocatalytic process is effective in the mineralization of spiramycin, reaching very high values of TOC removal. The photocatalyst NdT/OP at 30wt.% of NdT loading showed the highest photocatalytic activity (58% of TOC removed after 180min irradiation against only 31% removal after 300min of irradiation of NdT). We attribute this enhanced activity to the high effectiveness in the utilization of visible light through improved light harvesting and exploiting. OP particles act as "photoactive support", able to be excited by the external visible light irradiation, and reissue luminescence of wavelength suitable to promote NdT photomineralization activity.


Assuntos
Antibacterianos/química , Nitrogênio/química , Espiramicina/química , Titânio/química , Poluentes Químicos da Água/química , Cinética , Luz , Modelos Químicos , Fotólise , Raios Ultravioleta
6.
Nanotechnology ; 28(20): 204001, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28319034

RESUMO

Energy density, safety, and simple and environmentally friendly preparation methods are very significant aspects in the realization of a compact supercapacitor. Herein we report the use of a supercritical CO2-assisted gel drying process (SC-CO2) for the preparation of porous electrodes containing dispersed graphene in a poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) binder membrane to sandwich in a new portable supercapacitor based on graphene oxide (GO). A GO loading of 60 wt.% was found to give the best combination of factors (porosity, wettability, mechanical and electrochemical properties). Cycling voltammetry and charge/discharge studies showed an excellent capacitance behaviour and stability in an ionic liquid electrolyte, suggesting SC-CO2 processing as a promising platform to produce highly bulky and porous films for supercapacitors. The supercapacitor device delivers a very high energy density of 79.2 Wh kg-1 at a power density of 0.23 KW kg-1 (current density 0.5 A g-1, specific capacitance 36.2 F g-1) while that of steel remains at 50.3 Wh kg-1 at a power density of 2.8 KW kg-1 (current density 6 A g-1, specific capacitance 23.5 F g-1).

7.
J Nanosci Nanotechnol ; 14(7): 4960-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24757967

RESUMO

Few layer graphene oxide (GO) nanosheets were prepared by a very fast modified Hummers method and widely characterized. Avoiding further chemical reactions, trying to take advantage of the easy exfoliation of GO favoring the formation of a tribofilm, and using a methodology well known to the lubricant industry, they were added to a mineral oil by the help of a dispersant. The tribological behaviour of GO in mineral oil was investigated under a wide spectrum of conditions, from boundary and mixed lubrication to elastohydrodynamic regimes. A ball on disc setup tribometer has been used to verify the friction reduction due to nanosheets dispersed in mineral oil. Their good friction and anti-wear properties may possibly be attributed to the small and extremely thin laminated structure, which offer lower shear stress and prevent interaction between metal interfaces. Furthermore, the results clearly prove that graphene platelets in oil easily form a protective film to prevent the direct contact between steel surfaces and, thereby, improving the frictional behaviour of the base oil. This evidence is also related to the frictional coefficient trend in boundary regime.

8.
Nanotechnology ; 24(12): 125601, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23459162

RESUMO

Hybrid organic-inorganic oleylamine@MoS2-CNT nanocomposites with different compositions were obtained by thermal decomposition of tetrathiomolybdate in the presence of oleylamine and high quality multiwalled carbon nanotubes (CNTs) previously prepared by the CCVD technique. The nanocomposite samples were characterized by the TEM, SEM TG-MS, Raman and XRD techniques and successfully tested as anti-friction and anti-wear additives for grease lubricants.

9.
Nanotechnology ; 24(7): 075704, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23358596

RESUMO

Measurements of the absorbed dose and quality assurance programs play an important role in radiotherapy. Ionization chambers (CIs) are considered the most important dosimeters for their high accuracy, practicality and reliability, allowing absolute dose measurements. However, they have a relative large physical size, which limits their spatial resolution, and require a high bias voltage to achieve an acceptable collection of charges, excluding their use for in vivo dosimetry. In this paper, we propose new real time radiation detectors with electrodes based on graphene or vertically aligned multiwall carbon nanotubes (MWCNTs). We have investigated their charge collection efficiency and compared their performance with electrodes made of a conventional material. Moreover, in order to highlight the effect of nanocarbons, reference radiation detectors were also tested. The proposed dosimeters display an excellent linear response to dose and collect more charge than reference ones at a standard bias voltage, permitting the construction of miniaturized CIs. Moreover, an MWCNT based CI gives the best charge collection efficiency and it enables working also to lower bias voltages and zero volts, allowing in vivo applications. Graphene based CIs show better performance with respect to reference dosimeters at a standard bias voltage. However, at decreasing bias voltage the charge collection efficiency becomes worse if compared to a reference detector, likely due to graphene's semiconducting behavior.


Assuntos
Grafite/química , Nanotubos de Carbono/química , Radiometria/instrumentação , Cobre/química , Relação Dose-Resposta à Radiação , Eletricidade , Eletrodos , Nanotubos de Carbono/ultraestrutura , Silício/química
10.
J Nanosci Nanotechnol ; 11(11): 10053-62, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22413344

RESUMO

The synthesis of polynorbornene by ring opening metathesis polymerization (ROMP), in the presence of 1st and 2nd generation Grubbs catalyst-functionalized multiwalled carbon nanotubes (MWCNT), has been studied. MWCNTs were obtained by catalytic chemical vapour deposition (CCVD) of ethylene. A full characterization of the 1st and 2nd generation Grubbs catalyst-functionalized nanotubes was performed by FTIR and TG-DTG-MS. The amount of catalyst grafted to the nanotube surface was estimated. The activity of the catalyst-functionalized nanotubes in ROMP of 2-norbornene was found to be similar to that of bare 1st and 2nd generation Grubbs catalysts. The characterization of polynorbornene-carbon nanotube composites shows that the nanotubes are well dispersed in the polymer matrix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...