Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(6): e97144, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24887021

RESUMO

Diacylglycerol kinase α (DGKα), by phosphorylating diacylglycerol into phosphatidic acid, provides a key signal driving cell migration and matrix invasion. We previously demonstrated that in epithelial cells activation of DGKα activity promotes cytoskeletal remodeling and matrix invasion by recruiting atypical PKC at ruffling sites and by promoting RCP-mediated recycling of α5ß1 integrin to the tip of pseudopods. In here we investigate the signaling pathway by which DGKα mediates SDF-1α-induced matrix invasion of MDA-MB-231 invasive breast carcinoma cells. Indeed we showed that, following SDF-1α stimulation, DGKα is activated and localized at cell protrusion, thus promoting their elongation and mediating SDF-1α induced MMP-9 metalloproteinase secretion and matrix invasion. Phosphatidic acid generated by DGKα promotes localization at cell protrusions of atypical PKCs which play an essential role downstream of DGKα by promoting Rac-mediated protrusion elongation and localized recruitment of ß1 integrin and MMP-9. We finally demonstrate that activation of DGKα, atypical PKCs signaling and ß1 integrin are all essential for MDA-MB-231 invasiveness. These data indicates the existence of a SDF-1α induced DGKα - atypical PKC - ß1 integrin signaling pathway, which is essential for matrix invasion of carcinoma cells.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Quimiocina CXCL12/farmacologia , Diacilglicerol Quinase/metabolismo , Integrina beta1/metabolismo , Proteína Quinase C/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica , Transporte Proteico/efeitos dos fármacos , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo
2.
Proc Natl Acad Sci U S A ; 107(9): 4182-7, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20160093

RESUMO

Diacylglycerol kinases (DGKs) convert diacylglycerol (DAG) into phosphatidic acid (PA), acting as molecular switches between DAG- and PA-mediated signaling. We previously showed that Src-dependent activation and plasma membrane recruitment of DGKalpha are required for growth-factor-induced cell migration and ruffling, through the control of Rac small-GTPase activation and plasma membrane localization. Herein we unveil a signaling pathway through which DGKalpha coordinates the localization of Rac. We show that upon hepatocyte growth-factor stimulation, DGKalpha, by producing PA, provides a key signal to recruit atypical PKCzeta/iota (aPKCzeta/iota) in complex with RhoGDI and Rac at ruffling sites of colony-growing epithelial cells. Then, DGKalpha-dependent activation of aPKCzeta/iota mediates the release of Rac from the inhibitory complex with RhoGDI, allowing its activation and leading to formation of membrane ruffles, which constitute essential requirements for cell migration. These findings highlight DGKalpha as the central element of a lipid signaling pathway linking tyrosine kinase growth-factor receptors to regulation of aPKCs and RhoGDI, and providing a positional signal regulating Rac association to the plasma membrane.


Assuntos
Diacilglicerol Quinase/metabolismo , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Fator de Crescimento de Hepatócito/fisiologia , Proteína Quinase C/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Membrana Celular/fisiologia , Cães , Imunofluorescência , Fosforilação , Transdução de Sinais , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA