Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34426807

RESUMO

The spike (S) glycoprotein of the pandemic virus, SARS-CoV-2, is a critically important target of vaccine design and therapeutic development. A high-yield, scalable, cGMP-compliant downstream process for the stabilized, soluble, native-like S protein ectodomain is necessary to meet the extensive material requirements for ongoing research and development. As of June 2021, S proteins have exclusively been purified using difficult-to-scale, low-yield methodologies such as affinity and size-exclusion chromatography. Herein we present the first known non-affinity purification method for two S constructs, S_dF_2P and HexaPro, expressed in the mammalian cell line, CHO-DG44. A high-throughput resin screen on the Tecan Freedom EVO200 automated bioprocess workstation led to identification of ion exchange resins as viable purification steps. The chromatographic unit operations along with industry-standard methodologies for viral clearances, low pH treatment and 20 nm filtration, were assessed for feasibility. The developed process was applied to purify HexaPro from a CHO-DG44 stable pool harvest and yielded the highest yet reported amount of pure S protein. Our results demonstrate that commercially available chromatography resins are suitable for cGMP manufacturing of SARS-CoV-2 Spike protein constructs. We anticipate our results will provide a blueprint for worldwide biopharmaceutical production laboratories, as well as a starting point for process intensification.

2.
Biotechnol J ; 16(9): e2000641, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34174016

RESUMO

High throughput process development (HTPD) using liquid handling robotics and RoboColumns is an established methodology in downstream process development to screen chromatography resins and optimize process designs to meet target product profiles. However, HTPD is not yet widely available for use in viral clearance capability of the resin due to a variety of constraints. In the present study, a BSL-1-compatible, non-infectious MVM model, MVM-VLP, was tested for viral clearance assessment with various resin and membrane chromatography operations in a HTPD mode. To detect the MVM-VLP in the high throughput experiments, an electrochemiluminescence immunoassay (ECLIA) assay was developed with up to 5 logs of dynamic range. Storage time suitability of MVM-VLP solutions in various buffer matrices, in the presence or absence of a glycoprotein vaccine candidate, were assessed. Then, MVM-VLP and a test article monoclonal antibody (mAb) were used in a HTPD design that included commercially available ion exchange media chemistries, elucidating a wide variety of viral clearance ability at different operating conditions. The methodologies described herein have the potential to be a part of the process design stage in biologics manufacturing process development, which in turn can reduce risk associated with viral clearance validation studies.


Assuntos
Produtos Biológicos , Vacinas , Anticorpos Monoclonais , Cromatografia , Cromatografia por Troca Iônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...