Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 251: 116995, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33142565

RESUMO

We present a new method for the total functional recycling of alginate-based composite materials made via ionotropic gelation. The original material, an alginate/fiberglass foam with thermal insulation characteristics, was produced following a patented process in which fiberglass waste is embedded into the polyanionic gel matrix, and the resulting compound is then freeze-dried. The functional recycling is carried out by disassembling the ionic matrix - which is initially formed by the interaction between a cation (e.g. calcium) and the negatively charged alginate backbone - with the use of a chelator (Ethylenediaminetetraacetic acid disodium salt) with a high affinity for the cations, thus obtaining a homogeneous solution. An ionotropic gel can then be re-formed upon deactivation of the chelating activity under mild acid conditions. We managed to maintain or improve the thermal, mechanical and acoustic performances of the original material and we successfully tested the possibility of multiple recycling cycles.

2.
Adv Biosyst ; 3(5): e1800286, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-32627414

RESUMO

Carbon nanotube (CNT)-modified surfaces unequivocally demonstrate their biocompatibility and ability to boost the electrical activity of neuronal cells cultured on them. Reasons for this effect are still under debate. However, the intimate contact at the membrane level between these thready nanostructures and cells, in combination with their unique electrical properties, seems to play an important role. The entire existing literature exploiting the effect of CNTs on modulating cellular behavior deals with cell cultures grown on purified multiwalled carbon nanotubes (MWNTs) deposited on a supporting surface via drop-casting or mechanical entrapment. Here, for the first time, it is demonstrated that CNTs directly grown on a supporting silicon surface by a chemical vapor deposition (CVD)-assisted technique have the same effect. It is shown that primary neuronal cells developed above a carpet of CVD CNTs form a healthy and functional network. The resulting neuronal network shows increased electrical activity when compared to a similar network developed on a control glass surface. The low cost and high versatility of the here presented CVD-based synthesis process, together with the possibility to create on supporting substrate patterns of any arbitrary shape of CNTs, open up new opportunities for brain-machine interfaces or neuroprosthetic devices.


Assuntos
Interfaces Cérebro-Computador , Hipocampo/metabolismo , Nanotubos de Carbono , Rede Nervosa/metabolismo , Neurônios/metabolismo , Animais , Hipocampo/citologia , Rede Nervosa/citologia , Neurônios/citologia , Ratos
3.
Micron ; 102: 88-96, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28917581

RESUMO

It is widely accepted that the pathological state of cells is characterized by a modification of mechanical properties, affecting cellular shape and viscoelasticity as well as adhesion behaviour and motility. Thus, assessing these parameters could represent an interesting tool to monitor disease development and progression, but also the effects of drug treatments. Since biomechanical properties of cells are strongly related to cytoskeletal architecture, in this work we extensively studied the effects of selective impairments of actin microfilaments and microtubules on HeLa cells through force-deformation curves and stress relaxation tests with atomic force microscopy. Confocal microscopy was also used to display the effects of the used drugs on the cytoskeletal structure. In synergy with the aforementioned methods, stress relaxation data were used to assess the storage and loss moduli, as a complementary way to describe the influence of cytoskeletal components on cellular viscoelasticity. Our results indicate that F-actin and microtubules play a complementary role in the cell stiffness and viscoelasticity, and both are fundamental for the adhesion properties. Our data support also the application of biomechanics as a tool to study diseases and their treatments.


Assuntos
Actinas/metabolismo , Forma Celular/fisiologia , Citoesqueleto/metabolismo , Elasticidade/fisiologia , Microtúbulos/metabolismo , Fenômenos Biomecânicos/fisiologia , Linhagem Celular Tumoral , Módulo de Elasticidade/fisiologia , Células HeLa , Humanos , Microscopia de Força Atômica , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...