Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 57(16): 1957-1975.e9, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35998585

RESUMO

Cells with latent stem ability can contribute to mammalian tissue regeneration after damage. Whether the central nervous system (CNS) harbors such cells remains controversial. Here, we report that DNGR-1 lineage tracing in mice identifies an ependymal cell subset, wherein resides latent regenerative potential. We demonstrate that DNGR-1-lineage-traced ependymal cells arise early in embryogenesis (E11.5) and subsequently spread across the lining of cerebrospinal fluid (CSF)-filled compartments to form a contiguous sheet from the brain to the end of the spinal cord. In the steady state, these DNGR-1-traced cells are quiescent, committed to their ependymal cell fate, and do not contribute to neuronal or glial lineages. However, trans-differentiation can be induced in adult mice by CNS injury or in vitro by culture with suitable factors. Our findings highlight previously unappreciated ependymal cell heterogeneity and identify across the entire CNS an ependymal cell subset wherein resides damage-responsive neural stem cell potential.


Assuntos
Células-Tronco Neurais , Animais , Diferenciação Celular , Epêndima , Mamíferos , Camundongos , Neuroglia , Medula Espinal
2.
J Cell Sci ; 134(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34060624

RESUMO

The shuttling of transcription factors and transcriptional regulators into and out of the nucleus is central to the regulation of many biological processes. Here we describe a new method for studying the rates of nuclear entry and exit of transcriptional regulators. A photo-responsive LOV (light-oxygen-voltage) domain from Avena sativa is used to sequester fluorescently labelled transcriptional regulators YAP1 and TAZ (also known as WWTR1) on the surface of mitochondria and to reversibly release them upon blue light illumination. After dissociation, fluorescent signals from the mitochondria, cytoplasm and nucleus are extracted by a bespoke app and used to generate rates of nuclear entry and exit. Using this method, we demonstrate that phosphorylation of YAP1 on canonical sites enhances its rate of nuclear export. Moreover, we provide evidence that, despite high intercellular variability, YAP1 import and export rates correlate within the same cell. By simultaneously releasing YAP1 and TAZ from sequestration, we show that their rates of entry and exit are correlated. Furthermore, combining the optogenetic release of YAP1 with lattice light-sheet microscopy reveals high heterogeneity of YAP1 dynamics within different cytoplasmic regions, demonstrating the utility and versatility of our tool to study protein dynamics. This article has an associated First Person interview with Anna M. Dowbaj, joint first author of the paper.


Assuntos
Núcleo Celular , Optogenética , Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP
3.
J Comp Neurol ; 529(13): 3274-3291, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33950531

RESUMO

Perineuronal nets are extracellular glycoprotein structures that have been found on some neurons in the central nervous system and that have been shown to regulate their structural plasticity. Until now work on perineuronal nets has been focused on their role in cortical structures where they are selectively expressed on parvalbumin-positive neurons and are reported to restrict the experience-dependent plasticity of inhibitory afferents. Here, we examined the expression of perineuronal nets subcortically, showing that they are expressed in several discrete structures, including nuclei that comprise the brain network controlling reproductive behaviors (e.g., mounting, lordosis, aggression, and social defense). In particular, perineuronal nets were found in the posterior dorsal division of the medial amygdala, the medial preoptic nucleus, the posterior medial bed nucleus of the stria terminalis, the ventrolateral ventromedial hypothalamus and adjacent tuberal nucleus, and the ventral premammillary nucleus in both the mouse and primate brain. Comparison of perineuronal nets in male and female mice revealed a significant sexually dimorphic expression, with expression found prominently on estrogen receptor expressing neurons in the medial amygdala. These findings suggest that perineuronal nets may be involved in regulating neural plasticity in the mammalian reproductive system.


Assuntos
Encéfalo/metabolismo , Glicoproteínas/biossíntese , Rede Nervosa/metabolismo , Reprodução/fisiologia , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia , Animais , Química Encefálica/fisiologia , Callithrix , Feminino , Glicoproteínas/análise , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Rede Nervosa/química , Oligodendroglia/química , Oligodendroglia/metabolismo , Imagem Óptica/métodos , Primatas , Roedores , Especificidade da Espécie
4.
Nat Protoc ; 16(1): 239-262, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33247285

RESUMO

Advances in light-sheet and confocal microscopy now allow imaging of cleared large biological tissue samples and enable the 3D appreciation of cell and protein localization in their native organ environment. However, the sample preparations for such imaging are often onerous, and their capability for antigen detection is limited. Here, we describe FLASH (fast light-microscopic analysis of antibody-stained whole organs), a simple, rapid, fully customizable technique for molecular phenotyping of intact tissue volumes. FLASH utilizes non-degradative epitope recovery and membrane solubilization to enable the detection of a multitude of membranous, cytoplasmic and nuclear antigens in whole mouse organs and embryos, human biopsies, organoids and Drosophila. Retrieval and immunolabeling of epithelial markers, an obstacle for previous clearing techniques, can be achieved with FLASH. Upon volumetric imaging, FLASH-processed samples preserve their architecture and integrity and can be paraffin-embedded for subsequent histopathological analysis. The technique can be performed by scientists trained in light microscopy and yields results in <1 week.


Assuntos
Antígenos/análise , Imunofluorescência/métodos , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Animais , Drosophila , Epitopos/análise , Feminino , Humanos , Rim/ultraestrutura , Aparelho Lacrimal/ultraestrutura , Fígado/ultraestrutura , Pulmão/ultraestrutura , Masculino , Glândulas Mamárias Humanas/ultraestrutura , Camundongos , Organoides/ultraestrutura , Pâncreas/ultraestrutura , Estômago/ultraestrutura
5.
Neuropharmacology ; 80: 34-44, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24486378

RESUMO

It is well-established that neuronal intracellular signaling governed by the extracellular signal-regulated kinase (ERK/MAPK) plays a crucial role in long-term adaptive changes that occur during cognitive processes. ERK is a downstream component of a conserved signaling module that is activated by the serine/threonine kinase, Raf, which activates the MAPK/ERK kinase (MEK)1/2 protein kinases, which, in turn, activate ERK1/2. This signaling pathway has been reported to be activated in numerous physiological conditions due to a variety of stimuli, ranging from the activation of ionotropic glutamatergic receptors to metabotropic dopaminergic receptors and neurotrophin receptors. Interestingly, activated ERK can have early and late downstream effects at both the nuclear and synaptic levels. Locally, ERK signaling results in transient changes in the efficacy of synaptic transmission by modifying both pre- and post-synaptic targets. Once translocated into the nucleus, ERK signaling may control transcription by targeting several different regulators of gene expression such as transcription factors and histone proteins. ERK function is considered fundamental in processes such as long-term memory storage and drug addiction, by means of its role in activity-dependent epigenetic modifications that occur in the brain. In this review, we summarize the current understanding of ERK action in the neuroepigenetic processes underlying physiological responses, cognitive processes and drug addiction.


Assuntos
Encéfalo/metabolismo , Cognição , Histonas/metabolismo , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Neurônios/metabolismo , Regulação para Cima , Acetilação/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Cognição/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Entorpecentes/toxicidade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Transtornos Relacionados ao Uso de Opioides/enzimologia , Transtornos Relacionados ao Uso de Opioides/metabolismo , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
6.
Neuropharmacology ; 70: 168-79, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23347952

RESUMO

Epigenetic changes such as covalent modifications of histone proteins represent complex molecular signatures that provide a cellular memory of previously experienced stimuli without irreversible changes of the genetic code. In this study we show that new gene expression induced in vivo by morphine withdrawal occurs with concomitant epigenetic modifications in brain regions critically involved in drug-dependent behaviors. We found that naloxone-precipitated withdrawal, but not chronic morphine administration, caused a strong induction of phospho-histone H3 immunoreactivity in the nucleus accumbens (NAc) shell/core and in the lateral septum (LS), a change that was accompanied by augmented H3 acetylation (lys14) in neurons of the NAc shell. Morphine withdrawal induced the phosphorylation of the epigenetic factor methyl-CpG-binding protein 2 (MeCP2) in Ser421 both in the LS and the NAc shell. These epigenetic changes were accompanied by the activation of members of the ERK pathway as well as increased expression of the immediate early genes (IEG) c-fos and activity-regulated cytoskeleton-associated protein (Arc/Arg3.1). Using a pharmacological approach, we found that H3 phosphorylation and IEG expression were partially dependent on ERK activation, while MeCP2 phosphorylation was fully ERK-independent. These findings provide new important information on the role of the ERK pathway in the regulation of epigenetic marks and gene expression that may concur to regulate in vivo the cellular changes underlying the onset of the opioid withdrawal syndrome.


Assuntos
Sistema de Sinalização das MAP Quinases/genética , Morfina/efeitos adversos , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Núcleos Septais/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Acetilação , Aminoacetonitrila/análogos & derivados , Aminoacetonitrila/farmacologia , Animais , Proteínas do Citoesqueleto/metabolismo , Epigênese Genética/genética , Expressão Gênica/genética , Histonas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Proteína 2 de Ligação a Metil-CpG/metabolismo , Morfina/farmacologia , Naloxona/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Fosforilação , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Núcleos Septais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Síndrome de Abstinência a Substâncias/genética
7.
PLoS One ; 7(10): e46250, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056271

RESUMO

The ventral tegmental area (VTA) is widely implicated in drug addiction and other psychiatric disorders. This brain region is densely populated by dopaminergic (DA) neurons and also contains a sparse population of γ-aminobutyric acid (GABA)ergic cells that regulate the activity of the principal neurons. Therefore, an in-depth knowledge of the organization of VTA GABAergic circuits and of the plasticity induced by drug consumption is essential for understanding the mechanisms by which drugs induce stable changes in brain reward circuits. Using immunohistochemistry, we provide a detailed description of the localization of major GABA(A) and GABA(B) receptor subunits in the rat VTA. We show that DA and GABAergic cells express both GABA(A) and GABA(B) receptors. However VTA neurons differ considerably in the expression of GABA(A) receptor subunits, as the α1 subunit is associated predominantly with non-DA cells, whereas the α3 subunit is present at low levels in both types of VTA neurons. Using an unbiased stereological method, we then demonstrate that α1-positive elements represent only a fraction of non-DA neurons and that the ratio of DA and non-DA cells is quite variable throughout the rostro-caudal extent of the VTA. Interestingly, DA and non-DA cells receive a similar density of perisomatic synapses, whereas axo-dendritic synapses are significantly more abundant in non-DA cells, indicating that local interneurons receive prominent GABAergic inhibition. These findings reveal a differential expression of GABA receptor subtypes in the two major categories of VTA neurons and provide an anatomical basis for interpreting the plasticity of inhibitory circuits induced by drug exposure.


Assuntos
Sinapses/metabolismo , Área Tegmentar Ventral/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Dopamina/metabolismo , Imuno-Histoquímica , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Área Tegmentar Ventral/metabolismo
8.
EMBO J ; 30(20): 4287-98, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21847097

RESUMO

The epigenetic changes of the chromatin represent an attractive molecular substrate for adaptation to the environment. We examined here the role of CREB-binding protein (CBP), a histone acetyltransferase involved in mental retardation, in the genesis and maintenance of long-lasting systemic and behavioural adaptations to environmental enrichment (EE). Morphological and behavioural analyses demonstrated that EE ameliorates deficits associated to CBP deficiency. However, CBP-deficient mice also showed a strong defect in environment-induced neurogenesis and impaired EE-mediated enhancement of spatial navigation and pattern separation ability. These defects correlated with an attenuation of the transcriptional programme induced in response to EE and with deficits in histone acetylation at the promoters of EE-regulated, neurogenesis-related genes. Additional experiments in CBP restricted and inducible knockout mice indicated that environment-induced adult neurogenesis is extrinsically regulated by CBP function in mature granule cells. Overall, our experiments demonstrate that the environment alters gene expression by impinging on activities involved in modifying the epigenome and identify CBP-dependent transcriptional neuroadaptation as an important mediator of EE-induced benefits, a finding with important implications for mental retardation therapeutics.


Assuntos
Proteína de Ligação a CREB/metabolismo , Cognição , Neurogênese/fisiologia , Acetilação , Animais , Comportamento Animal , Proteína de Ligação a CREB/genética , Feminino , Expressão Gênica , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Neurogênese/genética , Neurônios/metabolismo , Regiões Promotoras Genéticas , Transcrição Gênica
9.
Neuroendocrinology ; 80(6): 368-78, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15731569

RESUMO

Dopamine inhibits pituitary melanotrope cells of the amphibian Xenopus laevis through activation of a dopamine (D2) receptor that couples to a Gi protein. Activated Gi protein subunits are known to affect voltage-operated Ca2+ currents (ICa). In the present study we investigated which Ca2+ currents are regulated by D2-receptor activation and which Gi protein subunits are involved. Whole-cell voltage-clamp patch-clamp experiments from holding potentials (HPs) of -80 and -30 mV show that 28.6 and 36.9%, respectively, of the total ICa was inhibited by apomorphin, a D2-receptor agonist. The inhibited current had fast activation and inactivation kinetics. From an HP of -80 mV, inhibition of N-type Ca2+ currents with omega-conotoxin GVIA and R-type current by SNX-482 reduced the efficacy of the apomorphin-induced inhibition. From an HP of -30 mV this reduction for omega-conotoxin GVIA was still observed. Blocking L-type current by nifedipine or P/Q-type current by omega-agatoxin IVA did not affect apomorphin-induced inhibition at either HP. Our results imply that D2-receptor activation inhibits both N- and R-type Ca2+ currents. Using a strong depolarizing pre-pulse partially reversed the inhibition of the total current by apomorphin. About 50% of this inhibition was achieved through interaction of Gbeta/gamma proteins, and this part of the inhibited ICa had fast activating and inactivating kinetics. However, the other part of the current inhibited by D2-receptor activation may proceed through Galpha-PKA phosphorylation.


Assuntos
Canais de Cálcio/metabolismo , Hipófise/citologia , Hipófise/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Apomorfina/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/efeitos dos fármacos , Células Cultivadas , Agonistas de Dopamina/farmacologia , Eletrofisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp , Hipófise/efeitos dos fármacos , Receptores de Dopamina D2/efeitos dos fármacos , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...