Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Mol Cell Endocrinol ; 566-567: 111911, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36905979

RESUMO

Liver impact of prolonged GH-treatment given to non-GH-deficient growing mice between the third and eighth week of life was evaluated in both sexes. Tissues were collected 6 h after last dose or four weeks later. Somatometric, biochemical, histological, immunohistochemical, RT-qPCR and immunoblotting determinations were performed. Five-week GH intermittent administration induced body weight gain and body and bone length increase, augmented organ weight, higher hepatocellular size and proliferation, and increased liver IGF1 gene expression. Phosphorylation of signaling mediators and expression of GH-induced proliferation-related genes was decreased in GH-treated mice liver 6h after last injection, reflecting active sensitization/desensitization cycles. In females, GH elicited EGFR expression, associated to higher EGF-induced STAT3/5 phosphorylation. Four weeks after treatment, increased organ weight concomitant to body weight gain was still observed, whereas hepatocyte enlargement reverted. However, basal signaling for critical mediators was lower in GH-treated animals and in male controls compared to female ones, suggesting signaling declination.


Assuntos
Hormônio do Crescimento , Transdução de Sinais , Camundongos , Masculino , Feminino , Animais , Hormônio do Crescimento/metabolismo , Fosforilação , Fígado/metabolismo , Peso Corporal
2.
J Mol Endocrinol ; 69(2): 357-376, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35608964

RESUMO

Growth hormone (GH) exerts major actions in cardiac growth and metabolism. Considering the important role of insulin in the heart and the well-established anti-insulin effects of GH, cardiac insulin resistance may play a role in the cardiopathology observed in acromegalic patients. As conditions of prolonged exposure to GH are associated with a concomitant increase of circulating GH, IGF1 and insulin levels, to dissect the direct effects of GH, in this study, we evaluated the activation of insulin signaling in the heart using four different models: (i) transgenic mice overexpressing GH, with chronically elevated GH, IGF1 and insulin circulating levels; (ii) liver IGF1-deficient mice, with chronically elevated GH and insulin but decreased IGF1 circulating levels; (iii) mice treated with GH for a short period of time; (iv) primary culture of rat cardiomyocytes incubated with GH. Despite the differences in the development of cardiomegaly and in the metabolic alterations among the three experimental mouse models analyzed, exposure to GH was consistently associated with a decreased response to acute insulin stimulation in the heart at the receptor level and through the PI3K/AKT pathway. Moreover, a blunted response to insulin stimulation of this signaling pathway was also observed in cultured cardiomyocytes of neonatal rats incubated with GH. Therefore, the key novel finding of this work is that impairment of insulin signaling in the heart is a direct and early event observed as a consequence of exposure to GH, which may play a major role in the development of cardiac pathology.


Assuntos
Acromegalia , Hormônio do Crescimento Humano , Animais , Hormônio do Crescimento/metabolismo , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Transdução de Sinais
3.
Mol Cell Endocrinol ; 538: 111465, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597725

RESUMO

Growth Hormone (GH) plays crucial roles in mammary gland development and growth, and its upregulation has been associated with breast cancer promotion and/or progression. To ascertain how high GH levels could promote mammary tissue oncogenic transformation, morphological characteristics and the expression of receptors involved in mammary growth, development and cancer, and of mitogenic mediators were analyzed in the mammary gland of virgin adult transgenic mice that overexpress GH. Whole mounting and histologic analysis evidenced that transgenic mice exhibit increased epithelial ductal elongation and enlarged ducts along with deficient branching and reduced number of alveolar structures compared to wild type mice. The number of differentiated alveolar structures was diminished in transgenic mice while the amount of terminal end buds (TEBs) did not differ between both groups of mice. GH, insulin-like growth factor 1 (IGF1) and GH receptor mRNA levels were augmented in GH-overexpressing mice breast tissue, as well as IGF1 receptor protein content. However, GH receptor protein levels were decreased in transgenic mice. Fundamental receptors for breast growth and development like progesterone receptor and epidermal growth factor receptor were also increased in mammary tissue from transgenic animals. In turn, the levels of the proliferation marker Ki67, cFOS and Cyclin D1 were increased in GH-overexpressing mice, while cJUN expression was decreased and cMYC did not vary. In conclusion, prolonged exposure to high GH levels induces morphological and molecular alterations in the mammary gland that affects its normal development. While these effects would not be tumorigenic per se, they might predispose to oncogenic transformation.


Assuntos
Proteínas de Transporte/genética , Hormônio do Crescimento/genética , Fator de Crescimento Insulin-Like I/genética , Glândulas Mamárias Animais/anormalidades , Animais , Animais Geneticamente Modificados , Biomarcadores/metabolismo , Feminino , Hormônio do Crescimento/metabolismo , Glândulas Mamárias Animais/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo
4.
Mol Cell Endocrinol ; 509: 110802, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32259636

RESUMO

Continuously elevated levels of growth hormone (GH) during life in mice are associated with hepatomegaly due to hepatocytes hypertrophy and hyperplasia, chronic liver inflammation, elevated levels of arachidonic acid (AA) at young ages and liver tumors development at old ages. In this work, the hepatic expression of enzymes involved in AA metabolism, cPLA2α, COX1 and COX2 enzymes, was evaluated in young and old GH-transgenic mice. Mice overexpressing GH exhibited higher hepatic expression of cPLA2α, COX1 and COX2 in comparison to controls at young and old ages and in both sexes. In old mice, when tumoral and non-tumoral tissue were compared, elevated expression of COX2 was observed in tumors. In contrast, exposure to continuous lower levels of hormone for a short period affected COX1 expression only in males. Considering the role of inflammation during liver tumorigenesis, these findings support a role of alterations in AA metabolism in GH-driven liver tumorigenesis.


Assuntos
Fosfolipases A2 do Grupo IV/genética , Hormônio do Crescimento/metabolismo , Fígado/metabolismo , Prostaglandina-Endoperóxido Sintases/genética , Regulação para Cima/genética , Alanina Transaminase/sangue , Animais , Peso Corporal , Bovinos , Proliferação de Células , Feminino , Fosfolipases A2 do Grupo IV/metabolismo , Hepatócitos/citologia , Fígado/anatomia & histologia , Masculino , Camundongos Transgênicos , Tamanho do Órgão , Fosforilação , Prostaglandina-Endoperóxido Sintases/metabolismo , Ratos , Receptor IGF Tipo 1/metabolismo , Receptores da Somatotropina/metabolismo
5.
Endocr Connect ; 8(8): 1108-1117, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31272083

RESUMO

Transgenic mice overexpressing growth hormone (GH) spontaneously develop liver tumors, including hepatocellular carcinoma (HCC), within a year. The preneoplastic liver pathology in these mice recapitulates that observed in humans at high risk of developing hepatic cancer. Although increased expression of galectin 1 (GAL1) in liver tissue is associated with HCC aggressiveness, a link between this glycan-binding protein and hormone-related tumor development has not yet been explored. In this study, we investigated GAL1 expression during liver tumor progression in mice continuously exposed to high levels of GH. GAL1 expression was determined by Western blotting, RT-qPCR and immunohistochemistry in the liver of transgenic mice overexpressing GH. Animals of representative ages at different stages of liver pathology were studied. GAL1 expression was upregulated in the liver of GH-transgenic mice. This effect was observed at early ages, when animals displayed no signs of liver disease or minimal histopathological alterations and was also detected in young adults with preneoplastic liver pathology. Remarkably, GAL1 upregulation was sustained during aging and its expression was particularly enhanced in liver tumors. GH also induced hepatic GAL1 expression in mice that were treated with this hormone for a short period. Moreover, GH triggered a rapid increment in GAL1 protein expression in human HCC cells, denoting a direct effect of the hormone on hepatocytes. Therefore, our results indicate that GH upregulates GAL1 expression in mouse liver, which may have critical implications in tumorigenesis. These findings suggest that this lectin could be implicated in hormone-driven liver carcinogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA