Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Hematol Oncol ; 12(1): 104, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072918

RESUMO

BACKGROUND: Triple-Negative Breast Cancer is particularly aggressive, and its metastasis to the brain has a significant psychological impact on patients' quality of life, in addition to reducing survival. The development of brain metastases is particularly harmful in triple-negative breast cancer (TNBC). To date, the mechanisms that induce brain metastasis in TNBC are poorly understood. METHODS: Using a human blood-brain barrier (BBB) in vitro model, an in vitro 3D organotypic extracellular matrix, an ex vivo mouse brain slices co-culture and in an in vivo xenograft experiment, key step of brain metastasis were recapitulated to study TNBC behaviors. RESULTS: In this study, we demonstrated for the first time the involvement of the precursor of Nerve Growth Factor (proNGF) in the development of brain metastasis. More importantly, our results showed that proNGF acts through TrkA independent of its phosphorylation to induce brain metastasis in TNBC. In addition, we found that proNGF induces BBB transmigration through the TrkA/EphA2 signaling complex. More importantly, our results showed that combinatorial inhibition of TrkA and EphA2 decreased TBNC brain metastasis in a preclinical model. CONCLUSIONS: These disruptive findings provide new insights into the mechanisms underlying brain metastasis with proNGF as a driver of brain metastasis of TNBC and identify TrkA/EphA2 complex as a potential therapeutic target.

2.
Front Oncol ; 13: 661775, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576898

RESUMO

Head and Neck Squamous Cell Carcinoma (HNSCC) remains a cancer with a poor prognosis, with a 5-year survival rate of less than 50%. Although epidermal growth factor receptor (EGFR) is almost always overexpressed, targeted anti-EGFR therapies have modest efficacy and are mainly used in palliative care. Growth factors such as Nerve Growth Factor (NGF) and its precursor proNGF have been shown in our laboratory to play a role in tumor growth and aggressiveness. Interestingly, an interaction between Sortilin, a proNGF receptor, and EGFR has been observed. This interaction appears to interfere with the pro-oncogenic signaling of EGF and modulate the membrane expression of EGFR. The aim of this study was to characterize this interaction biologically, to assess its impact on clinical prognosis and to analyze its role in the cellular trafficking of EGFR. Using immunohistochemical staining on tumor sections from patients treated at our university center and PLA (Proximity Ligation Assay) labeling, we showed that Sortilin expression is significantly associated with reduced 5-year survival. However, when Sortilin was associated with EGFR, this association was not found. Using the Cal-27 and Cal-33 cancer cell lines, we observed that proNGF reduces the effects of EGF on cell growth by inducing the internalization of its receptor. These results therefore suggest a regulatory role for Sortilin in the degradation or renewal of EGFR on the membrane. It would be interesting in future work to show the intracellular fate of EGFR and the role of (pro)neurotrophins in these mechanisms.

3.
Cancers (Basel) ; 14(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35565390

RESUMO

Emerging evidence indicates that the TRPM8 channel plays an important role in prostate cancer (PCa) progression, by impairing the motility of these cancer cells. Here, we reveal a novel facet of PCa motility control via direct protein-protein interaction (PPI) of the channel with the small GTPase Rap1A. The functional interaction of the two proteins was assessed by active Rap1 pull-down assays and live-cell imaging experiments. Molecular modeling analysis allowed the identification of four putative residues involved in TRPM8-Rap1A interaction. Point mutations of these sites impaired PPI as shown by GST-pull-down, co-immunoprecipitation, and PLA experiments and revealed their key functional role in the adhesion and migration of PC3 prostate cancer cells. More precisely, TRPM8 inhibits cell migration and adhesion by trapping Rap1A in its GDP-bound inactive form, thus preventing its activation at the plasma membrane. In particular, residues E207 and Y240 in the sequence of TRPM8 and Y32 in that of Rap1A are critical for the interaction between the two proteins not only in PC3 cells but also in cervical (HeLa) and breast (MCF-7) cancer cells. This study deepens our knowledge of the mechanism through which TRPM8 would exert a protective role in cancer progression and provides new insights into the possible use of TRPM8 as a new therapeutic target in cancer treatment.

4.
J Exp Clin Cancer Res ; 41(1): 110, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35346305

RESUMO

BACKGROUND: CD44 is a multifunctional membrane glycoprotein. Through its heparan sulfate chain, CD44 presents growth factors to their receptors. We have shown that CD44 and Tropomyosin kinase A (TrkA) form a complex following nerve growth factor (NGF) induction. Our study aimed to understand how CD44 and TrkA interact and the consequences of inhibiting this interaction regarding the pro-tumoral effect of NGF in breast cancer. METHODS: After determining which CD44 isoforms (variants) are involved in forming the TrkA/CD44 complex using proximity ligation assays, we investigated the molecular determinants of this interaction. By molecular modeling, we isolated the amino acids involved and confirmed their involvement using mutations. A CD44v3 mimetic peptide was then synthesized to block the TrkA/CD44v3 interaction. The effects of this peptide on the growth, migration and invasion of xenografted triple-negative breast cancer cells were assessed. Finally, we investigated the correlations between the expression of the TrkA/CD44v3 complex in tumors and histo-pronostic parameters. RESULTS: We demonstrated that isoform v3 (CD44v3), but not v6, binds to TrkA in response to NGF stimulation. The final 10 amino acids of exon v3 and the TrkA H112 residue are necessary for the association of CD44v3 with TrkA. Functionally, the CD44v3 mimetic peptide impairs not only NGF-induced RhoA activation, clonogenicity, and migration/invasion of breast cancer cells in vitro but also tumor growth and metastasis in a xenograft mouse model. We also detected TrkA/CD44v3 only in cancerous cells, not in normal adjacent tissues. CONCLUSION: Collectively, our results suggest that blocking the CD44v3/TrkA interaction can be a new therapeutic option for triple-negative breast cancers.


Assuntos
Neoplasias da Mama , Receptores de Hialuronatos , Fator de Crescimento Neural , Receptor trkA , Animais , Neoplasias da Mama/genética , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Camundongos , Fator de Crescimento Neural/farmacologia , Isoformas de Proteínas , Receptor trkA/metabolismo
5.
Cells ; 10(11)2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34831364

RESUMO

Polycomb repressive complex 2 (PRC2) mediates histone H3K27me3 methylation and the stable transcriptional repression of a number of gene expression programs involved in the control of cellular identity during development and differentiation. Here, we report on the generation and on the characterization of a zebrafish line harboring a null allele of eed, a gene coding for an essential component of the PRC2. Homozygous eed-deficient mutants present a normal body plan development but display strong defects at the level of the digestive organs, such as reduced size of the pancreas, hepatic steatosis, and a loss of the intestinal structures, to die finally at around 10-12 days post fertilization. In addition, we found that PRC2 loss of function impairs neuronal differentiation in very specific and discrete areas of the brain and increases larval activity in locomotor assays. Our work highlights that zebrafish is a suited model to study human pathologies associated with PRC2 loss of function and H3K27me3 decrease.


Assuntos
Sistema Digestório/metabolismo , Homeostase , Neurônios/citologia , Complexo Repressor Polycomb 2/deficiência , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Comportamento Animal , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Larva/metabolismo , Fígado/metabolismo , Lisina/metabolismo , Metilação , Atividade Motora , Mutação/genética , Neurônios/metabolismo , Especificidade de Órgãos , Complexo Repressor Polycomb 2/metabolismo , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...