Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Malar J ; 21(1): 204, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761324

RESUMO

BACKGROUND: Malaria is an infectious disease considered as one of the biggest causes of mortality in endemic areas. This life-threatening disease needs to be quickly diagnosed and treated. The standard diagnostic tools recommended by the World Health Organization are thick blood smears microscopy and immuno-chromatographic rapid diagnostic tests. However, these methods lack sensitivity especially in cases of low parasitaemia and non-falciparum infections. Therefore, the need for more accurate and reliable diagnostic tools, such as real-time polymerase chain reaction based methods which have proven greater sensitivity particularly in the screening of malaria, is prominent. This study was conducted at the French National Malaria Reference Centre to assess sensitivity and specificity of two commercial malaria qPCR kits and two in-house developed qPCRs compared to LAMP. METHODS: 183 blood samples received for expertise at the FNMRC were included in this study and were subjected to four different qPCR methods: the Biosynex Ampliquick® Malaria test, the BioEvolution Plasmodium Typage test, the in-house HRM and the in-house TaqMan qPCRs. The specificity and sensitivity of each method and their confidence intervals were determined with the LAMP-based assay Alethia® Malaria as the reference for malaria diagnosis. The accuracy of species diagnosis of the Ampliquick® Malaria test and the two in-house qPCRs was also evaluated using the BioEvolution Plasmodium Typage test as the reference method for species identification. RESULTS: The main results showed that when compared to LAMP, a test with excellent diagnostic performances, the two in-house developed qPCRs were the most sensitive (sensitivity at 100% for the in-house TaqMan qPCR and 98.1% for the in-house HRM qPCR), followed by the two commercial kits: the Biosynex Ampliquick® Malaria test (sensitivity at 97.2%) and the BioEvolution Plasmodium Typage (sensitivity at 95.4%). Additionally, with the in-house qPCRs we were able to confirm a Plasmodium falciparum infection in microscopically negative samples that were not detected by commercial qPCR kits. This demonstrates that the var genes of P. falciparum used in these in-house qPCRs are more reliable targets than the 18S sRNA commonly used in most of the developed qPCR methods for malaria diagnosis. CONCLUSION: Overall, these results accentuate the role molecular methods could play in the screening of malaria. This may represent a helpful tool for other laboratories looking to implement molecular diagnosis methods in their routine analysis, which could be essential for the detection and treatment of malaria carriers and even for the eradication of this disease.


Assuntos
Malária Falciparum , Malária , Plasmodium , Humanos , Laboratórios , Malária/diagnóstico , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Parasitemia/diagnóstico , Plasmodium/genética , Plasmodium falciparum/genética , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade
2.
Sci Rep ; 6: 33786, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27653778

RESUMO

Malaria caused by Plasmodium falciparum is associated with cytoadherence of infected red blood cells (iRBC) to endothelial cells. Numerous host molecules have been involved in cytoadherence, including the adhesive chemokine CX3CL1. Most of the identified parasite ligands are from the multigenic and hypervariable Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) family which makes them poor targets for the development of a broadly protective vaccine. Using proteomics, we have identified two 25-kDa parasite proteins with adhesive properties for CX3CL1, called CBP for CX3CL1 Binding Proteins. CBPs are coded by single-copy genes with little polymorphic variation and no homology with other P. falciparum gene products. Specific antibodies raised against epitopes from the predicted extracellular domains of each CBP efficiently stain the surface of RBC infected with trophozoites or schizonts, which is a strong indication of CBP expression at the surface of iRBC. These anti-CBP antibodies partially neutralize iRBC adherence to CX3CL1. This adherence is similarly inhibited in the presence of peptides from the CBP extracellular domains, while irrelevant peptides had no such effect. CBP1 and CBP2 are new P. falciparum ligands for the human chemokine CX3CL1. The identification of this non-polymorphic P. falciparum factors provides a new avenue for innovative vaccination approaches.

3.
J Infect Dis ; 211(2): 290-7, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25183768

RESUMO

BACKGROUND: In Plasmodium falciparum-infected patients treated with artemisinins, parasitemia declines through so-called pitting, an innate splenic process that transforms infected red blood cells (iRBCs) into once-infected RBCs (O-iRBCs). METHODS: We measured pitting in 83 French travelers and 42 Malian children treated for malaria with artesunate. RESULTS: In travelers, O-iRBCs peaked at 107.7% initial parasitemia. In Malian children aged 1.5-4 years, O-iRBCs peaked at higher concentrations than in children aged 9-13 years (91.60% vs 31.95%; P = .0097). The parasite clearance time in older children was shorter than in younger children (P = .0001), and the decline in parasitemia in children aged 1.5-4 years often started 6 hours after treatment initiation, a lag phase generally absent in infants and older children. A 6-hour lag phase in artificial pitting of artesunate-exposed iRBCs was also observed in vitro. The proportion of iRBCs recognized by autologous immunoglobulin G (IgG) correlated with the parasite clearance time (r = -0.501; P = .0006) and peak O-iRBC concentration (r = -0.420; P = .0033). CONCLUSIONS: Antimalarial immunity correlates with fast artemisinin-induced parasite clearance and low pitting rates. In nonimmune populations, artemisinin-induced P. falciparum clearance is related to pitting and starts after a 6-hour lag phase. In immune populations, passively and naturally acquired immune mechanisms operating faster than pitting may exist. This mechanism may mitigate the emergence of artemisinin-resistant P. falciparum in Africa.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/imunologia , Plasmodium falciparum/efeitos dos fármacos , Adolescente , Adulto , Artesunato , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Masculino , Mali , Carga Parasitária , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , Plasmodium falciparum/isolamento & purificação , Estudos Retrospectivos , Resultado do Tratamento
4.
Blood ; 124(2): 167-75, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24859359

RESUMO

Patients with severe malaria treated with artesunate sometimes experience a delayed hemolytic episode. Artesunate (AS) induces pitting, a splenic process whereby dead parasites are expelled from their host erythrocytes. These once-infected erythrocytes then return to the circulation. We analyzed hematologic parameters in 123 travelers treated with AS for severe malaria. Among 60 nontransfused patients observed for more than 8 days, 13 (22%) had delayed hemolysis. The peak concentration of circulating once-infected erythrocytes was measured during the first week in 21 patients and was significantly higher in 9 patients with delayed hemolysis than in 12 with other patterns of anemia (0.30 vs 0.07; P = .0001). The threshold of 180 million once-infected erythrocytes per liter discriminated patients with delayed hemolysis with 89% sensitivity and 83% specificity. Once-infected erythrocyte morphology analyzed by using ImageStream in 4 patients showed an 8.9% reduction in their projected area, an alteration likely contributing to their shorter lifespan. Delayed clearance of infected erythrocytes spared by pitting during AS treatment is an original mechanism of hemolytic anemia. Our findings consolidate a disease framework for posttreatment anemia in malaria in which delayed hemolysis is a new entity. The early concentration of once-infected erythrocytes is a solid candidate marker to predict post-AS delayed hemolysis.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Hemólise/efeitos dos fármacos , Malária Falciparum/diagnóstico , Malária Falciparum/tratamento farmacológico , Adulto , Anemia Hemolítica/induzido quimicamente , Anemia Hemolítica/parasitologia , Artesunato , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Feminino , Seguimentos , Humanos , Malária Falciparum/mortalidade , Masculino , Pessoa de Meia-Idade , Prognóstico , Resultado do Tratamento , Adulto Jovem
5.
Sci Rep ; 4: 3767, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24441939

RESUMO

The mechanisms underlying reduced red blood cell (RBC) deformability during Plasmodium falciparum (Pf) malaria remain poorly understood. Here, we explore the possible involvement of the L-arginine and nitric oxide (NO) pathway on RBC deformability in Pf-infected patients and parasite cultures. RBC deformability was reduced during the acute attack (day0) and returned to normal values upon convalescence (day28). Day0 values correlated with plasma L-arginine levels (r = 0.69; p = 0.01) and weakly with parasitemia (r = -0.38; p = 0.006). In vitro, day0 patient's plasma incubated with ring-stage cultures at 41°C reduced RBC deformability, and this effect correlated strongly with plasma L-arginine levels (r = 0.89; p < 0.0001). Moreover, addition of exogenous L-arginine to the cultures increased deformability of both Pf-free and trophozoite-harboring RBCs. NO synthase activity, evidenced in Pf-infected RBCs, induced L-arginine-dependent NO production. These data show that hypoargininemia during P. falciparum malaria may altogether impair NO production and reduce RBC deformability, particularly at febrile temperature.


Assuntos
Arginina/sangue , Deformação Eritrocítica , Eritrócitos/patologia , Malária Falciparum/sangue , Adulto , Arginina/deficiência , Arginina/metabolismo , Feminino , Humanos , Malária Falciparum/etiologia , Malária Falciparum/patologia , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/sangue , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Temperatura
7.
J Cereb Blood Flow Metab ; 31(2): 514-26, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20683453

RESUMO

The pathogenesis of cerebral malaria (CM) remains largely unknown. There is growing evidence that combination of both parasite and host factors could be involved in blood-brain barrier (BBB) breakdown. However, lack of adequate in vitro model of human BBB so far hampered molecular studies. In this article, we propose the use of hCMEC/D3 cells, a well-established human cerebral microvascular endothelial cell (EC) line, to study BBB breakdown induced by Plasmodium falciparum-parasitized red blood cells and environmental conditions. We show that coculture of parasitized erythrocytes with hCMEC/D3 cells induces cell adhesion and paracellular permeability increase, which correlates with disorganization of zonula occludens protein 1 expression pattern. Permeability increase and modification of tight junction proteins distribution are cytoadhesion independent. Finally, we show that permeability of hCMEC/D3 cell monolayers is mediated through parasite induced metabolic acidosis, which in turns correlates with apoptosis of parasitized erythrocytes. This new coculture model represents a very useful tool, which will improve the knowledge of BBB breakdown and the development of adjuvant therapies, together with antiparasitic drugs.


Assuntos
Acidose/metabolismo , Acidose/parasitologia , Barreira Hematoencefálica/parasitologia , Eritrócitos/parasitologia , Malária Cerebral/sangue , Malária Cerebral/parasitologia , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Plasmodium falciparum , Anexina A5/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Células Endoteliais/fisiologia , Citometria de Fluxo , Humanos , Concentração de Íons de Hidrogênio , L-Lactato Desidrogenase/metabolismo , Lentivirus/genética , Merozoítos/parasitologia , Merozoítos/fisiologia , Microscopia Confocal , Permeabilidade , Interferência de RNA , Junções Íntimas/metabolismo , Transdução Genética , Tripsina/farmacologia
8.
J Infect Dis ; 197(7): 1062-73, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18419473

RESUMO

Acute clinical manifestations of falciparum malaria, such as multiorgan failure and cerebral malaria, occur unpredictably and lead to coma and death within hours if left untreated. Despite the emergency administration of effective antimalarial drugs, 15%-20% of patients die. Other therapeutic approaches are therefore urgently needed. There is increasing evidence that endothelial changes play a key role in the pathogenesis of severe malaria. We therefore used coculture models to study interactions between infected erythrocytes and endothelium. We found that adhesion of Plasmodium falciparum to endothelial cells in vitro activated the Rho kinase signaling pathway, which is strongly involved in various vascular diseases. When added concomitantly with parasites, the Rho kinase inhibitor fasudil (HA-1077), a drug already in clinical use, decreased both NF-kappaB activation and endothelial cell apoptosis. Fasudil also helped to restore endothelial barrier integrity after P. falciparum adhesion. Rho kinase inhibition thus appears to be a promising adjunctive therapeutic approach to the management of severe human malaria.


Assuntos
Apoptose , Endotélio Vascular/parasitologia , Plasmodium falciparum/imunologia , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Técnicas de Cocultura , Endotélio Vascular/efeitos dos fármacos , Eritrócitos/parasitologia , Humanos , Modelos Biológicos , NF-kappa B/metabolismo , Inibidores de Proteínas Quinases/farmacologia
9.
J Infect Dis ; 196(11): 1603-12, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18008243

RESUMO

BACKGROUND: Severe malaria and one of its most important pathogenic processes, cerebral malaria, involves the sequestration of parasitized red blood cells (pRBCs) in brain postcapillary venules. Although the pathogenic mechanisms underlying malaria remain poorly characterized, it has been established that adhesion of pRBCs to endothelial cells (ECs) can result in cell apoptosis, which in turn may lead to disruption of the blood-brain barrier. The nature of the parasite molecules involved in the pathogenesis of severe malaria remains elusive. METHODS: Whole-transcriptome profiling of nonapoptogenic versus apoptogenic parasite field isolates obtained from Gabonese children was performed with pan-genomic Plasmodium falciparum DNA microarrays; radiolabeled instead of fluorescent cDNAs were used to improve the sensitivity of signal detection. RESULTS: Our methods allowed the identification of 59 genes putatively associated with the induction of EC apoptosis. Silencing of Plasmodium gene expression with specific double-stranded RNA was performed on 8 selected genes; 5 of these, named "Plasmodium apoptosis-linked pathogenicity factors" (PALPFs), were found to be linked to parasite apoptogenicity. Of these genes, 2 might act via parasite cytoadherence. CONCLUSION: This is the first attempt to identify genes involved in parasite pathogenic mechanisms against human ECs. The finding of PALPFs illuminates perspectives for novel therapeutic strategies against cerebral complications of malaria.


Assuntos
Encéfalo/parasitologia , DNA de Protozoário/análise , Perfilação da Expressão Gênica , Genes de Protozoários , Malária Cerebral/parasitologia , Malária Falciparum/diagnóstico , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Fatores de Virulência , Animais , Apoptose , Barreira Hematoencefálica/parasitologia , Adesão Celular , Criança , Células Endoteliais/parasitologia , Eritrócitos/parasitologia , Gabão , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
PLoS Med ; 3(12): e513, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17194195

RESUMO

BACKGROUND: The global spread of multidrug-resistant malaria parasites has led to an urgent need for new chemotherapeutic agents. Drug discovery is primarily directed to the asexual blood stages, and few drugs that are effective against the obligatory liver stages, from which the pathogenic blood infection is initiated, have become available since primaquine was deployed in the 1950s. METHODS AND FINDINGS: Using bioassay-guided fractionation based on the parasite's hepatic stage, we have isolated a novel morphinan alkaloid, tazopsine, from a plant traditionally used against malaria in Madagascar. This compound and readily obtained semisynthetic derivatives were tested for inhibitory activity against liver stage development in vitro (P. falciparum and P. yoelii) and in vivo (P. yoelii). Tazopsine fully inhibited the development of P. yoelii (50% inhibitory concentration [IC50] 3.1 muM, therapeutic index [TI] 14) and P. falciparum (IC50 4.2 muM, TI 7) hepatic parasites in cultured primary hepatocytes, with inhibition being most pronounced during the early developmental stages. One derivative, N-cyclopentyl-tazopsine (NCP-tazopsine), with similar inhibitory activity was selected for its lower toxicity (IC50 3.3 muM, TI 46, and IC50 42.4 muM, TI 60, on P. yoelii and P. falciparum hepatic stages in vitro, respectively). Oral administration of NCP-tazopsine completely protected mice from a sporozoite challenge. Unlike the parent molecule, the derivative was uniquely active against Plasmodium hepatic stages. CONCLUSIONS: A readily obtained semisynthetic derivative of a plant-derived compound, tazopsine, has been shown to be specifically active against the liver stage, but inactive against the blood forms of the malaria parasite. This unique specificity in an antimalarial drug severely restricts the pressure for the selection of drug resistance to a parasite stage limited both in numbers and duration, thus allowing researchers to envisage the incorporation of a true causal prophylactic in malaria control programs.


Assuntos
Antimaláricos/uso terapêutico , Fígado/parasitologia , Malária/tratamento farmacológico , Morfinanos/uso terapêutico , Fitoterapia , Casca de Planta , Animais , Bioensaio , Fracionamento Celular , Células Cultivadas , Hepatócitos/parasitologia , Humanos , Concentração Inibidora 50 , Malária/parasitologia , Camundongos , Dados de Sequência Molecular , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium yoelii/efeitos dos fármacos , Plasmodium yoelii/crescimento & desenvolvimento
11.
J Antimicrob Chemother ; 57(3): 489-97, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16415127

RESUMO

OBJECTIVES: A quantitative structure-activity relationship study using a database of 395 compounds previously tested against chloroquine-susceptible strains of the blood stages of Plasmodium falciparum to predict new in vitro antimalarial drugs has been developed. METHODS: Topological indices were used as structural descriptors and were related to antimalarial activity by using linear discriminant analysis (LDA) and multilinear regression (MLR). Two discriminant equations were obtained (FD1 and FD2), which allowed us to carry out successful classification of 90% and 80% of compounds, respectively. The IC50 values of the compounds were introduced to get an MLR equation model suitable to predict their in vitro activities. RESULTS: Using this model, a set of 27 drugs against a chloroquine-susceptible clone (3D7) of P. falciparum have been selected and evaluated in vitro. Among these drugs are monensin, nigericin, vincristine, vindesine, ethylhydrocupreine and salinomycin with in vitro IC50s at nanomolar concentrations (0.3, 0.4, 2, 6, 26 and 188 nM, respectively). Other compounds such as hycanthone, amsacrine, aphidicolin, bepridil, amiodarone, ranolazine and triclocarban showed in vitro IC50 values below 5 microM in the mathematical model. CONCLUSIONS: These results demonstrate the usefulness of the approach for the selection and design of new lead drugs active against P. falciparum.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Animais , Análise Discriminante , Desenho de Fármacos , Concentração Inibidora 50 , Modelos Lineares , Modelos Biológicos , Estrutura Molecular , Análise Multivariada , Plasmodium falciparum/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade
13.
Antimicrob Agents Chemother ; 47(8): 2636-9, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12878530

RESUMO

The in vitro activities of 25 quinolones and fluoroquinolones against erythrocytic stages of Plasmodium falciparum and against liver stages of Plasmodium yoelii yoelii and P. falciparum were studied. All compounds were inhibitory for chloroquine-sensitive and chloroquine-resistant P. falciparum grown in red blood cells. This inhibitory effect increased with prolonged incubation and according to the logarithm of the drug concentration. Grepafloxacin, trovafloxacin, and ciprofloxacin were the most effective drugs, with 50% inhibitory concentrations of <10 micro g/ml against both strains. Only grepafloxacin, piromidic acid, and trovafloxacin had an inhibitory effect against hepatic stages of P. falciparum and P. yoelii yoelii; this effect combined reductions of the numbers and the sizes of schizonts in treated cultures. Thus, quinolones have a potential for treatment or prevention of malaria through their unique antiparasitic effect against erythrocytic and hepatic stages of Plasmodium.


Assuntos
Anti-Infecciosos/farmacologia , Eritrócitos/parasitologia , Fígado/parasitologia , Plasmodium/efeitos dos fármacos , 4-Quinolonas , Animais , Células Cultivadas , Fluoroquinolonas , Camundongos , Plasmodium/crescimento & desenvolvimento , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium yoelii/efeitos dos fármacos , Plasmodium yoelii/genética
14.
Bioorg Med Chem Lett ; 13(1): 75-7, 2003 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-12467620

RESUMO

2-Methoxyprop-2-yl peroxides were synthesized and evaluated in vitro against Plasmodium falciparum. These acyclic artemisinin-related peroxides revealed moderate to good activity but were devoid of alkylating property towards the synthetic model of heme Mn(II)-TPP.


Assuntos
Antimaláricos/síntese química , Peróxidos/síntese química , Alquilação , Animais , Antimaláricos/farmacologia , Artemisininas/química , Concentração Inibidora 50 , Metaloporfirinas/química , Peróxidos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Sesquiterpenos/química , Relação Estrutura-Atividade
15.
Mem. Inst. Oswaldo Cruz ; 87(supl.3): 429-34, 1992. tab, ilus
Artigo em Inglês | LILACS | ID: lil-121141

RESUMO

Six Plasmodium falciparum protein fractions, isolated under reducing conditions, were used to immunize mice, rabbits and the squirrel monkey Saimiri sciureus. Five or seven subcutaneous injections of each antigenic preparation, in conjunction with Freund's complete or incomplete adjuvants, were administered. This led to the development of specific antibodies detected by IFAT, ELISA or immunobloting which inhibited merozoite reinvasion in in vitro P. falciparum cultures. This activity seems to be associated with rhoptry proteins contained in fractions Pf F2 and Pf F4


Assuntos
Antígenos , Plasmodium falciparum/imunologia , Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...