Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 14(1): 7013, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963921

RESUMO

Earth's atmosphere, whose ionization stability plays a fundamental role for the evolution and endurance of life, is exposed to the effect of cosmic explosions producing high energy Gamma-ray-bursts. Being able to abruptly increase the atmospheric ionization, they might deplete stratospheric ozone on a global scale. During the last decades, an average of more than one Gamma-ray-burst per day were recorded. Nevertheless, measurable effects on the ionosphere were rarely observed, in any case on its bottom-side (from about 60 km up to about 350 km of altitude). Here, we report evidence of an intense top-side (about 500 km) ionospheric perturbation induced by significant sudden ionospheric disturbance, and a large variation of the ionospheric electric field at 500 km, which are both correlated with the October 9, 2022 Gamma-ray-burst (GRB221009A).

3.
Bratisl Lek Listy ; 124(1): 12-24, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36519602

RESUMO

Electroencephalography (EEG) signals are considered one of the oldest techniques for detecting disorders in medical signal processing. However, brain complexity and the non-stationary nature of EEG signals represent a challenge when applying this technique. The current paper proposes new geometrical features for classification of seizure (S) and seizure-free (SF) EEG signals with respect to the Poincaré pattern of discrete wavelet transform (DWT) coefficients. DWT decomposes EEG signal to four levels, and thus Poincaré plot is shown for coefficients. Due to patterns of the Poincaré plot, novel geometrical features are computed from EEG signals. The computed features are involved in standard descriptors of 2­D projection (STD), summation of triangle area using consecutive points (STA), as well as summation of shortest distance from each point relative to the 45-degree line (SSHD), and summation of distance from each point relative to the coordinate center (SDTC). The proposed procedure leads to discriminate features between S and SF EEG signals. Thereafter, a binary particle swarm optimization (BPSO) is developed as an appropriate technique for feature selection. Finally, k-nearest neighbor (KNN) and support vector machine (SVM) classifiers are used for classifying features in S and SF groups. By developing the proposed method, we have archived classification accuracy of 99.3 % with respect to the proposed geometrical features. Accordingly, S and SF EEG signals have been classified. Also, Poincaré plot of SF EEG signals has more regular geometrical shapes as compared to S group. As a final remark, we notice that the Poincaré plot of coefficients in S EEG signals has occupied more space as compared to SF EEG signals (Tab. 3, Fig. 11, Ref. 57). Text in PDF www.elis.sk Keywords: EEG signal, DWT, Poincaré plot, geometrical feature, BPSO, SVM, KNN.


Assuntos
Eletroencefalografia , Análise de Ondaletas , Humanos , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador , Convulsões/diagnóstico , Encéfalo , Algoritmos
4.
Sci Rep ; 10(1): 15161, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32939024

RESUMO

Algorithms based on Empirical Mode Decomposition (EMD) and Iterative Filtering (IF) are largely implemented for representing a signal as superposition of simpler well-behaved components called Intrinsic Mode Functions (IMFs). Although they are more suitable than traditional methods for the analysis of nonlinear and nonstationary signals, they could be easily misused if their known limitations, together with the assumptions they rely on, are not carefully considered. In this work, we examine the main pitfalls and provide caveats for the proper use of the EMD- and IF-based algorithms. Specifically, we address the problems related to boundary errors, to the presence of spikes or jumps in the signal and to the decomposition of highly-stochastic signals. The consequences of an improper usage of these techniques are discussed and clarified also by analysing real data and performing numerical simulations. Finally, we provide the reader with the best practices to maximize the quality and meaningfulness of the decomposition produced by these techniques. In particular, a technique for the extension of signal to reduce the boundary effects is proposed; a careful handling of spikes and jumps in the signal is suggested; the concept of multi-scale statistical analysis is presented to treat highly stochastic signals.

5.
Front Physiol ; 8: 701, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018352

RESUMO

Despite the population of the noninvasive, economic, comfortable, and easy-to-install photoplethysmography (PPG), it is still lacking a mathematically rigorous and stable algorithm which is able to simultaneously extract from a single-channel PPG signal the instantaneous heart rate (IHR) and the instantaneous respiratory rate (IRR). In this paper, a novel algorithm called deppG is provided to tackle this challenge. deppG is composed of two theoretically solid nonlinear-type time-frequency analyses techniques, the de-shape short time Fourier transform and the synchrosqueezing transform, which allows us to extract the instantaneous physiological information from the PPG signal in a reliable way. To test its performance, in addition to validating the algorithm by a simulated signal and discussing the meaning of "instantaneous," the algorithm is applied to two publicly available batch databases, the Capnobase and the ICASSP 2015 signal processing cup. The former contains PPG signals relative to spontaneous or controlled breathing in static patients, and the latter is made up of PPG signals collected from subjects doing intense physical activities. The accuracies of the estimated IHR and IRR are compared with the ones obtained by other methods, and represent the state-of-the-art in this field of research. The results suggest the potential of deppG to extract instantaneous physiological information from a signal acquired from widely available wearable devices, even when a subject carries out intense physical activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...