Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clean Technol Environ Policy ; : 1-14, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37359169

RESUMO

Mine water can be a renewable and economical source of geothermal and hydraulic energy. Nine discharges from closed and flooded coal mines in the Laciana Valley (León, NW Spain) have been studied. Various technologies for the energy use of mine water, as well as the influence of factors such as temperature, the need for water treatment, investment, potential customers and expansion capacity, have been evaluated by means of a decision-making tool. It is concluded that the most advantageous option is an open-loop geothermal system using the waters of a mountain mine, the temperature of which exceeds 14 °C and whose distance to customers is less than 2 km. A technical-economic viability study for a district heating network designed to supply heating and hot water to six public buildings in the nearby town of Villablino is presented. The proposed use of mine water might help areas that have been greatly affected socioeconomically by the closure of the mines and has other advantages compared to conventional energy systems, such as the reduction of CO2 emissions. Graphical Abstract: It showing the advantages of using mine water as an energy source for district heating and a simplified layout. Supplementary Information: The online version contains supplementary material available at 10.1007/s10098-023-02526-y.

2.
Sci Total Environ ; 576: 59-69, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27780100

RESUMO

Abandoned and flooded mine networks provide underground reservoirs of mine water that can be used as a renewable geothermal energy source. A complete hydrochemical characterization of mine water is required to optimally design the geothermal installation, understand the hydraulic behavior of the water in the reservoir and prevent undesired effects such as pipe clogging via mineral precipitation. Water pumped from the Barredo-Figaredo mining reservoir (Asturias, NW Spain), which is currently exploited for geothermal use, has been studied and compared to water from a separate, nearby mountain mine and a river that receives mine water discharge and partially infiltrates into the mine workings. Although the hydrochemistry was altered during the flooding process, the deep mine waters are currently near neutral, net alkaline, high metal waters of Na-HCO3 type. Isotopic values suggest that mine waters are closely related to modern meteoric water, and likely correspond to rapid infiltration. Suspended and dissolved solids, and particularly iron content, of mine water results in some scaling and partial clogging of heat exchangers, but water temperature is stable (22°C) and increases with depth, so, considering the available flow (>100Ls-1), the Barredo-Figaredo mining reservoir represents a sustainable, long-term resource for geothermal use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...