Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 42015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26371508

RESUMO

Tissue- and cell-type-specific regulators of alternative splicing (AS) are essential components of posttranscriptional gene regulation, necessary for normal cellular function, patterning, and development. Mice with ablation of Epithelial splicing regulatory protein (Esrp1) develop cleft lip and palate. Loss of both Esrp1 and its paralog Esrp2 results in widespread developmental defects with broad implications to human disease. Deletion of the Esrps in the epidermis revealed their requirement for establishing a proper skin barrier, a primary function of epithelial cells comprising the epidermis. We profiled the global Esrp-mediated splicing regulatory program in epidermis, which revealed large-scale programs of epithelial cell-type-specific splicing required for epithelial cell functions. These mice represent a valuable model for evaluating the essential role for AS in development and function of epithelial cells, which play essential roles in tissue homeostasis in numerous organs, and provide a genetic tool to evaluate important functional properties of epithelial-specific splice variants in vivo.


Assuntos
Estruturas Animais/embriologia , Células Epiteliais/fisiologia , Proteínas de Ligação a RNA/metabolismo , Animais , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas de Ligação a RNA/genética
2.
Adv Exp Med Biol ; 825: 267-302, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25201109

RESUMO

The epithelial to mesenchymal transition (EMT) and reverse mesenchymal to epithelial transition (MET) are developmentally conserved processes that are essential for patterning of developing embryos and organs. The EMT/MET are further utilized in wound healing, but they can also be hijacked by cancer cells to promote tumor progression and metastasis. The molecular pathways governing these processes have historically focused on the transcriptional regulation and networks that control them. Indeed, global profiling of transcriptional changes has provided a wealth of information into how these networks are regulated, the downstream targets, and functional consequence of alterations to the global transcriptome. However, recent evidence has revealed that the posttranscriptional landscape of the cell is also dramatically altered during the EMT/MET and contributes to changes in cell behavior and phenotypes. While studies of this aspect of EMT biology are still in their infancy, recent progress has been achieved by the identification of several RNA binding proteins (RBPs) that regulate splicing, polyadenylation, mRNA stability, and translational control during EMT. This chapter focuses on the global impact of RBPs that regulate mRNA maturation as well as outlines the functional impact of several key posttranscriptional changes during the EMT. The growing evidence of RBP involvement in the cellular transformation during EMT underscores that a coordinated regulation of both transcriptional and posttranscriptional changes is essential for EMT. Furthermore, new discoveries into these events will paint a more detailed picture of the transcriptome during the EMT/MET and provide novel molecular targets for treatment of human diseases.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Genoma Humano/fisiologia , Processamento Pós-Transcricional do RNA/fisiologia , Proteínas de Ligação a RNA , Transcriptoma/fisiologia , Animais , Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla/métodos , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...