Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 128: 282-289, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29673871

RESUMO

Coumarin therapy has been associated with high levels of inter- and intra-individual variation in the required dose to reach a therapeutic anticoagulation outcome. Therefore, a dynamic system that is able to achieve accurate delivery of a warfarin dose is of significant importance. Here we assess the ability of 3D printing to fabricate and deliver tailored individualised precision dosing using in-vitro and in-vivo models. Sodium warfarin loaded filaments were compounded using hot melt extrusion (HME) and further fabricated via fused deposition modelling (FDM) 3D printing to produce capsular-ovoid-shaped dosage forms loaded at 200 or 400 µg dose. The solid dosage forms and comparator warfarin aqueous solutions were administered by oral gavage to Sprague-Dawley rats. A novel UV imaging approach indicated that the erosion of the methacrylate matrix was at a rate of 16.4 and 15.2 µm/min for horizontal and vertical planes respectively. In vivo, 3D printed forms were as proportionately effective as their comparative solution form in doubling plasma exposure following a doubling of warfarin dose (184% versus 192% respectively). The 3D printed ovoids showed a lower Cmax of warfarin (1.51 and 3.33 mg/mL versus 2.5 and 6.44 mg/mL) and a longer Tmax (6 and 3.7 versus 4 and 1.5 h) in comparison to liquid formulation. This work demonstrates for the first time in vivo, the potential of FDM 3D printing to produce a tailored specific dosage form and to accurately titrate coumarin dose response to an individual patient.


Assuntos
Anticoagulantes/administração & dosagem , Composição de Medicamentos/métodos , Impressão Tridimensional , Administração Oral , Animais , Relação Dose-Resposta a Droga , Composição de Medicamentos/instrumentação , Liberação Controlada de Fármacos , Masculino , Modelos Animais , Ratos , Ratos Sprague-Dawley , Comprimidos , Varfarina/administração & dosagem
2.
Pharm Res ; 34(2): 427-437, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27943014

RESUMO

PURPOSE: Individualizing gastric-resistant tablets is associated with major challenges for clinical staff in hospitals and healthcare centres. This work aims to fabricate gastric-resistant 3D printed tablets using dual FDM 3D printing. METHODS: The gastric-resistant tablets were engineered by employing a range of shell-core designs using polyvinylpyrrolidone (PVP) and methacrylic acid co-polymer for core and shell structures respectively. Filaments for both core and shell were compounded using a twin-screw hot-melt extruder (HME). CAD software was utilized to design a capsule-shaped core with a complementary shell of increasing thicknesses (0.17, 0.35, 0.52, 0.70 or 0.87 mm). The physical form of the drug and its integrity following an FDM 3D printing were assessed using x-ray powder diffractometry (XRPD), thermal analysis and HPLC. RESULTS: A shell thickness ≥0.52 mm was deemed necessary in order to achieve sufficient core protection in the acid medium. The technology proved viable for incorporating different drug candidates; theophylline, budesonide and diclofenac sodium. XRPD indicated the presence of theophylline crystals whilst budesonide and diclofenac sodium remained amorphous in the PVP matrix of the filaments and 3D printed tablets. Fabricated tablets demonstrated gastric resistant properties and a pH responsive drug release pattern in both phosphate and bicarbonate buffers. CONCLUSIONS: Despite its relatively limited resolution, FDM 3D printing proved to be a suitable platform for a single-process fabrication of delayed release tablets. This work reveals the potential of dual FDM 3D printing as a unique platform for personalising delayed release tablets to suit an individual patient's needs.


Assuntos
Preparações de Ação Retardada/química , Comprimidos/química , Budesonida/química , Cápsulas/química , Diclofenaco/química , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Temperatura Alta , Humanos , Assistência Centrada no Paciente , Polímeros/química , Povidona/química , Impressão Tridimensional , Teofilina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA