Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594452

RESUMO

The identification of genetic and chemical perturbations with similar impacts on cell morphology can elucidate compounds' mechanisms of action or novel regulators of genetic pathways. Research on methods for identifying such similarities has lagged due to a lack of carefully designed and well-annotated image sets of cells treated with chemical and genetic perturbations. Here we create such a Resource dataset, CPJUMP1, in which each perturbed gene's product is a known target of at least two chemical compounds in the dataset. We systematically explore the directionality of correlations among perturbations that target the same protein encoded by a given gene, and we find that identifying matches between chemical and genetic perturbations is a challenging task. Our dataset and baseline analyses provide a benchmark for evaluating methods that measure perturbation similarities and impact, and more generally, learn effective representations of cellular state from microscopy images. Such advancements would accelerate the applications of image-based profiling of cellular states, such as uncovering drug mode of action or probing functional genomics.

2.
ArXiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38495561

RESUMO

As microscopy diversifies and becomes ever-more complex, the problem of quantification of microscopy images has emerged as a major roadblock for many researchers. All researchers must face certainchallenges in turning microscopy images into answers, independent of their scientific question and the images they've generated. Challenges may arise at many stages throughout the analysis process, including handling of the image files, image pre-processing, object finding, or measurement, and statistical analysis. While the exact solution required for each obstacle will be problem-specific, by understanding tools and tradeoffs, optimizing data quality, breaking workflows and data sets into chunks, talking to experts, and thoroughly documenting what has been done, analysts at any experience level can learn to overcome these challenges and create better and easier image analyses.

3.
J Microsc ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532662

RESUMO

As microscopy diversifies and becomes ever more complex, the problem of quantification of microscopy images has emerged as a major roadblock for many researchers. All researchers must face certain challenges in turning microscopy images into answers, independent of their scientific question and the images they have generated. Challenges may arise at many stages throughout the analysis process, including handling of the image files, image pre-processing, object finding, or measurement, and statistical analysis. While the exact solution required for each obstacle will be problem-specific, by keeping analysis in mind, optimizing data quality, understanding tools and tradeoffs, breaking workflows and data sets into chunks, talking to experts, and thoroughly documenting what has been done, analysts at any experience level can learn to overcome these challenges and create better and easier image analyses.

4.
Nat Methods ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532015

RESUMO

Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images. Existing cell segmentation methods are often tailored to specific modalities or require manual interventions to specify hyper-parameters in different experimental settings. Here, we present a multimodality cell segmentation benchmark, comprising more than 1,500 labeled images derived from more than 50 diverse biological experiments. The top participants developed a Transformer-based deep-learning algorithm that not only exceeds existing methods but can also be applied to diverse microscopy images across imaging platforms and tissue types without manual parameter adjustments. This benchmark and the improved algorithm offer promising avenues for more accurate and versatile cell analysis in microscopy imaging.

6.
ArXiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38351940

RESUMO

Together with the molecular knowledge of genes and proteins, biological images promise to significantly enhance the scientific understanding of complex cellular systems and to advance predictive and personalized therapeutic products for human health. For this potential to be realized, quality-assured image data must be shared among labs at a global scale to be compared, pooled, and reanalyzed, thus unleashing untold potential beyond the original purpose for which the data was generated. There are two broad sets of requirements to enable image data sharing in the life sciences. One set of requirements is articulated in the companion White Paper entitled "Enabling Global Image Data Sharing in the Life Sciences," which is published in parallel and addresses the need to build the cyberinfrastructure for sharing the digital array data (arXiv:2401.13023 [q-bio.OT], https://doi.org/10.48550/arXiv.2401.13023). In this White Paper, we detail a broad set of requirements, which involves collecting, managing, presenting, and propagating contextual information essential to assess the quality, understand the content, interpret the scientific implications, and reuse image data in the context of the experimental details. We start by providing an overview of the main lessons learned to date through international community activities, which have recently made considerable progress toward generating community standard practices for imaging Quality Control (QC) and metadata. We then provide a clear set of recommendations for amplifying this work. The driving goal is to address remaining challenges, and democratize access to common practices and tools for a spectrum of biomedical researchers, regardless of their expertise, access to resources, and geographical location.

7.
Nat Commun ; 15(1): 1594, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383513

RESUMO

Measuring the phenotypic effect of treatments on cells through imaging assays is an efficient and powerful way of studying cell biology, and requires computational methods for transforming images into quantitative data. Here, we present an improved strategy for learning representations of treatment effects from high-throughput imaging, following a causal interpretation. We use weakly supervised learning for modeling associations between images and treatments, and show that it encodes both confounding factors and phenotypic features in the learned representation. To facilitate their separation, we constructed a large training dataset with images from five different studies to maximize experimental diversity, following insights from our causal analysis. Training a model with this dataset successfully improves downstream performance, and produces a reusable convolutional network for image-based profiling, which we call Cell Painting CNN. We evaluated our strategy on three publicly available Cell Painting datasets, and observed that the Cell Painting CNN improves performance in downstream analysis up to 30% with respect to classical features, while also being more computationally efficient.


Assuntos
Redes Neurais de Computação
8.
Nat Methods ; 21(2): 182-194, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38347140

RESUMO

Validation metrics are key for tracking scientific progress and bridging the current chasm between artificial intelligence research and its translation into practice. However, increasing evidence shows that, particularly in image analysis, metrics are often chosen inadequately. Although taking into account the individual strengths, weaknesses and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multistage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides a reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Although focused on biomedical image analysis, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. The work serves to enhance global comprehension of a key topic in image analysis validation.


Assuntos
Inteligência Artificial
9.
Nat Methods ; 21(2): 195-212, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38347141

RESUMO

Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint-a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Semântica
10.
Nat Commun ; 15(1): 347, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184653

RESUMO

The morphology of cells is dynamic and mediated by genetic and environmental factors. Characterizing how genetic variation impacts cell morphology can provide an important link between disease association and cellular function. Here, we combine genomic sequencing and high-content imaging approaches on iPSCs from 297 unique donors to investigate the relationship between genetic variants and cellular morphology to map what we term cell morphological quantitative trait loci (cmQTLs). We identify novel associations between rare protein altering variants in WASF2, TSPAN15, and PRLR with several morphological traits related to cell shape, nucleic granularity, and mitochondrial distribution. Knockdown of these genes by CRISPRi confirms their role in cell morphology. Analysis of common variants yields one significant association and nominate over 300 variants with suggestive evidence (P < 10-6) of association with one or more morphology traits. We then use these data to make predictions about sample size requirements for increasing discovery in cellular genetic studies. We conclude that, similar to molecular phenotypes, morphological profiling can yield insight about the function of genes and variants.


Assuntos
Células-Tronco Pluripotentes Induzidas , Locos de Características Quantitativas , Mapeamento Cromossômico , Locos de Características Quantitativas/genética , Núcleo Celular , Forma Celular , Proteínas Mutantes
11.
ArXiv ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36945687

RESUMO

Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.

12.
Nat Methods ; 21(2): 170-181, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37710020

RESUMO

Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However, for scientists wishing to publish obtained images and image-analysis results, there are currently no unified guidelines for best practices. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here, we present community-developed checklists for preparing light microscopy images and describing image analyses for publications. These checklists offer authors, readers and publishers key recommendations for image formatting and annotation, color selection, data availability and reporting image-analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby to heighten the quality and explanatory power of microscopy data.


Assuntos
Lista de Checagem , Editoração , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador , Microscopia
13.
Curr Opin Biotechnol ; 85: 103055, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142646

RESUMO

Segmentation, or the outlining of objects within images, is a critical step in the measurement and analysis of cells within microscopy images. While improvements continue to be made in tools that rely on classical methods for segmentation, deep learning-based tools increasingly dominate advances in the technology. Specialist models such as Cellpose continue to improve in accuracy and user-friendliness, and segmentation challenges such as the Multi-Modality Cell Segmentation Challenge continue to push innovation in accuracy across widely varying test data as well as efficiency and usability. Increased attention on documentation, sharing, and evaluation standards is leading to increased user-friendliness and acceleration toward the goal of a truly universal method.


Assuntos
Algoritmos , Microscopia , Microscopia/métodos , Processamento de Imagem Assistida por Computador/métodos
14.
ArXiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38045474

RESUMO

Technological advances in high-throughput microscopy have facilitated the acquisition of cell images at a rapid pace, and data pipelines can now extract and process thousands of image-based features from microscopy images. These features represent valuable single-cell phenotypes that contain information about cell state and biological processes. The use of these features for biological discovery is known as image-based or morphological profiling. However, these raw features need processing before use and image-based profiling lacks scalable and reproducible open-source software. Inconsistent processing across studies makes it difficult to compare datasets and processing steps, further delaying the development of optimal pipelines, methods, and analyses. To address these issues, we present Pycytominer, an open-source software package with a vibrant community that establishes an image-based profiling standard. Pycytominer has a simple, user-friendly Application Programming Interface (API) that implements image-based profiling functions for processing high-dimensional morphological features extracted from microscopy images of cells. Establishing Pycytominer as a standard image-based profiling toolkit ensures consistent data processing pipelines with data provenance, therefore minimizing potential inconsistencies and enabling researchers to confidently derive accurate conclusions and discover novel insights from their data, thus driving progress in our field.

15.
Cytometry A ; 103(11): 915-926, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37789738

RESUMO

Quantitative microscopy is a powerful method for performing phenotypic screens from which image-based profiling can extract a wealth of information, termed profiles. These profiles can be used to elucidate the changes in cellular phenotypes across cell populations from different patient samples or following genetic or chemical perturbations. One such image-based profiling method is the Cell Painting assay, which provides morphological insight through the imaging of eight cellular compartments. Here, we examine the performance of the Cell Painting assay across multiple high-throughput microscope systems and find that all are compatible with this assay. Furthermore, we determine independently for each microscope system the best performing settings, providing those who wish to adopt this assay an ideal starting point for their own assays. We also explore the impact of microscopy setting changes in the Cell Painting assay and find that few dramatically reduce the quality of a Cell Painting profile, regardless of the microscope used.


Assuntos
Bioensaio , Microscopia , Humanos , Microscopia/métodos , Bioensaio/métodos
16.
Elife ; 122023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37753907

RESUMO

Drug resistance is a challenge in anticancer therapy. In many cases, cancers can be resistant to the drug prior to exposure, that is, possess intrinsic drug resistance. However, we lack target-independent methods to anticipate resistance in cancer cell lines or characterize intrinsic drug resistance without a priori knowledge of its cause. We hypothesized that cell morphology could provide an unbiased readout of drug resistance. To test this hypothesis, we used HCT116 cells, a mismatch repair-deficient cancer cell line, to isolate clones that were resistant or sensitive to bortezomib, a well-characterized proteasome inhibitor and anticancer drug to which many cancer cells possess intrinsic resistance. We then expanded these clones and measured high-dimensional single-cell morphology profiles using Cell Painting, a high-content microscopy assay. Our imaging- and computation-based profiling pipeline identified morphological features that differed between resistant and sensitive cells. We used these features to generate a morphological signature of bortezomib resistance. We then employed this morphological signature to analyze a set of HCT116 clones (five resistant and five sensitive) that had not been included in the signature training dataset, and correctly predicted sensitivity to bortezomib in seven cases, in the absence of drug treatment. This signature predicted bortezomib resistance better than resistance to other drugs targeting the ubiquitin-proteasome system, indicating specificity for mechanisms of resistance to bortezomib. Our results establish a proof-of-concept framework for the unbiased analysis of drug resistance using high-content microscopy of cancer cells, in the absence of drug treatment.


Assuntos
Antineoplásicos , Microscopia , Bortezomib/farmacologia , Ácidos Borônicos/farmacologia , Ácidos Borônicos/uso terapêutico , Pirazinas/farmacologia , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Inibidores de Proteassoma/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Apoptose
17.
bioRxiv ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37732209

RESUMO

Widespread sequencing has yielded thousands of missense variants predicted or confirmed as disease-causing. This creates a new bottleneck: determining the functional impact of each variant - largely a painstaking, customized process undertaken one or a few genes or variants at a time. Here, we established a high-throughput imaging platform to assay the impact of coding variation on protein localization, evaluating 3,547 missense variants of over 1,000 genes and phenotypes. We discovered that mislocalization is a common consequence of coding variation, affecting about one-sixth of all pathogenic missense variants, all cellular compartments, and recessive and dominant disorders alike. Mislocalization is primarily driven by effects on protein stability and membrane insertion rather than disruptions of trafficking signals or specific interactions. Furthermore, mislocalization patterns help explain pleiotropy and disease severity and provide insights on variants of unknown significance. Our publicly available resource will likely accelerate the understanding of coding variation in human diseases.

18.
J Microsc ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37727897

RESUMO

The 'Bridging Imaging Users to Imaging Analysis' survey was conducted in 2022 by the Center for Open Bioimage Analysis (COBA), BioImaging North America (BINA) and the Royal Microscopical Society Data Analysis in Imaging Section (RMS DAIM) to understand the needs of the imaging community. Through multichoice and open-ended questions, the survey inquired about demographics, image analysis experiences, future needs and suggestions on the role of tool developers and users. Participants of the survey were from diverse roles and domains of the life and physical sciences. To our knowledge, this is the first attempt to survey cross-community to bridge knowledge gaps between physical and life sciences imaging. Survey results indicate that respondents' overarching needs are documentation, detailed tutorials on the usage of image analysis tools, user-friendly intuitive software, and better solutions for segmentation, ideally in a format tailored to their specific use cases. The tool creators suggested the users familiarise themselves with the fundamentals of image analysis, provide constant feedback and report the issues faced during image analysis while the users would like more documentation and an emphasis on tool friendliness. Regardless of the computational experience, there is a strong preference for 'written tutorials' to acquire knowledge on image analysis. We also observed that the interest in having 'office hours' to get an expert opinion on their image analysis methods has increased over the years. The results also showed less-than-expected usage of online discussion forums in the imaging community for solving image analysis problems. Surprisingly, we also observed a decreased interest among the survey respondents in deep/machine learning despite the increasing adoption of artificial intelligence in biology. In addition, the community suggests the need for a common repository for the available image analysis tools and their applications. The opinions and suggestions of the community, released here in full, will help the image analysis tool creation and education communities to design and deliver the resources accordingly.

19.
J Microsc ; 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690102

RESUMO

CellProfiler is a widely used software for creating reproducible, reusable image analysis workflows without needing to code. In addition to the >90 modules that make up the main CellProfiler program, CellProfiler has a plugins system that allows for the creation of new modules which integrate with other Python tools or tools that are packaged in software containers. The CellProfiler-plugins repository contains a number of these CellProfiler modules, especially modules that are experimental and/or dependency-heavy. Here, we present an upgraded CellProfiler-plugins repository, an example of accessing containerised tools, improved documentation and added citation/reference tools to facilitate the use and contribution of the community.

20.
Front Bioinform ; 3: 1233748, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560357

RESUMO

As biological imaging continues to rapidly advance, it results in increasingly complex image data, necessitating a reevaluation of conventional bioimage analysis methods and their accessibility. This perspective underscores our belief that a transition from desktop-based tools to web-based bioimage analysis could unlock immense opportunities for improved accessibility, enhanced collaboration, and streamlined workflows. We outline the potential benefits, such as reduced local computational demands and solutions to common challenges, including software installation issues and limited reproducibility. Furthermore, we explore the present state of web-based tools, hurdles in implementation, and the significance of collective involvement from the scientific community in driving this transition. In acknowledging the potential roadblocks and complexity of data management, we suggest a combined approach of selective prototyping and large-scale workflow application for optimal usage. Embracing web-based bioimage analysis could pave the way for the life sciences community to accelerate biological research, offering a robust platform for a more collaborative, efficient, and democratized science.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...