Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
J Clin Invest ; 134(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747296

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac condition characterized by cardiac remodeling and life-threatening ventricular arrhythmias. In this issue of the JCI, Chelko, Penna, and colleagues mechanistically addressed the intricate contribution of immune-mediated injury in ACM pathogenesis. Inhibition of nuclear factor κ-B (NF-κB) and infiltration of monocyte-derived macrophages expressing C-C motif chemokine receptor-2 (CCR2) alleviated the phenotypic ACM features (i.e., fibrofatty replacement, contractile dysfunction, and ventricular arrhythmias) in desmoglein 2-mutant (Dsg2mut/mut) mice. These findings pave the way for efficacious and targetable immune therapy for patients with ACM.


Assuntos
Desmogleína 2 , Macrófagos , Receptores CCR2 , Animais , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Humanos , Desmogleína 2/genética , Desmogleína 2/metabolismo , Desmogleína 2/imunologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores CCR2/antagonistas & inibidores , NF-kappa B/metabolismo , NF-kappa B/genética , Arritmias Cardíacas/patologia , Arritmias Cardíacas/imunologia , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/patologia , Displasia Arritmogênica Ventricular Direita/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/imunologia , Cardiomiopatias/metabolismo
2.
Heart Rhythm ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38762134

RESUMO

BACKGROUND: Autonomic nerve activity is important in the mechanisms of paroxysmal atrial fibrillation (PAF). OBJECTIVE: To test the hypothesis that a single burst of skin sympathetic nerve activity (SKNA) can toggle on and off PAF or premature atrial contraction (PAC) clusters. METHODS: We performed neuECG recording over 7 days in patients with PAF. RESULTS: In Study 1, we found 8 patients (7 men, 1 woman, 62±8 years) had 124 episodes of PAF. An SKNA burst toggled both on and off PAF in 8 (6.5%) episodes (Type 1), toggled on but not off in 12 (9.7%) episodes (Type 2), and toggled on a PAC cluster, followed by PAF in 4 (3.2%) episodes (Type 3). The duration of these PAF episodes was < 10 min. The remaining 100 (80.6%) episodes were associated with active SKNA bursts throughout PAF (Type 4) and lasted longer than Type 1 (p=0.0185) and Type 2 (p=0.0027) PAF. There were 47 PAC clusters. Among them, 24 (51.1%) were toggled on and off, and 23 (48.9%) were toggled on but not off by an SKNA burst. In Study 2, we found 17 patients (9 men, 8 women, 58±12 years) with < 10 min PAF (4, 8, 0, and 31 of Types 1-4, respectively). There were significant circadian variations of all types of PAF. CONCLUSIONS: A single SKNA burst can toggle short-duration PAF and PAC cluster episodes on and off. The absence of continued SKNA after the onset might have affected the maintenance of these arrhythmias.

3.
Proteomics Clin Appl ; : e2300128, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38444254

RESUMO

PURPOSE: Micropeptides are an emerging class of proteins that play critical roles in cell signaling. Here, we describe the discovery of a novel micropeptide, dubbed slitharin (Slt), in conditioned media from Cardiosphere-derived cells (CDCs), a therapeutic cardiac stromal cell type. EXPERIMENTAL DESIGN: We performed mass spectrometry of peptide-enriched fractions from the conditioned media of CDCs and a therapeutically inert cell type (human dermal fibrobasts). We then evaluated the therapeutic capacity of the candidate peptide using an in vitro model of cardiomyocyte injury and a rat model of myocardial infarction. RESULTS: We identified a novel 24-amino acid micropeptide (dubbed Slitharin [Slt]) with a non-canonical leucine start codon, arising from long intergenic non-coding (LINC) RNA 2099. Neonatal rat ventricular myocytes (NRVMs) exposed to Slt were protected from hypoxic injury in vitro compared to a vehicle or scrambled control. Transcriptomic analysis of cardiomyocytes exposed to Slt reveals cytoprotective capacity, putatively through regulation of stress-induced MAPK-ERK. Slt also exerted cardioprotective effects in rats with myocardial infarction as shown by reduced infarct size 48 h post-injury. Conclusions and clinical relavance: Thus, Slt is a non-coding RNA-derived micropeptide, identified in the extracellular space, with a potential cardioprotective function.

5.
Arterioscler Thromb Vasc Biol ; 44(4): e117-e130, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38385289

RESUMO

BACKGROUND: Kawasaki disease (KD) is an acute febrile illness and systemic vasculitis often associated with cardiac sequelae, including arrhythmias. Abundant evidence indicates a central role for IL (interleukin)-1 and TNFα (tumor necrosis factor-alpha) signaling in the formation of arterial lesions in KD. We aimed to investigate the mechanisms underlying the development of electrophysiological abnormalities in a murine model of KD vasculitis. METHODS: Lactobacillus casei cell wall extract-induced KD vasculitis model was used to investigate the therapeutic efficacy of clinically relevant IL-1Ra (IL-1 receptor antagonist) and TNFα neutralization. Echocardiography, in vivo electrophysiology, whole-heart optical mapping, and imaging were performed. RESULTS: KD vasculitis was associated with impaired ejection fraction, increased ventricular tachycardia, prolonged repolarization, and slowed conduction velocity. Since our transcriptomic analysis of human patients showed elevated levels of both IL-1ß and TNFα, we asked whether either cytokine was linked to the development of myocardial dysfunction. Remarkably, only inhibition of IL-1 signaling by IL-1Ra but not TNFα neutralization was able to prevent changes in ejection fraction and arrhythmias, whereas both IL-1Ra and TNFα neutralization significantly improved vasculitis and heart vessel inflammation. The treatment of L casei cell wall extract-injected mice with IL-1Ra also restored conduction velocity and improved the organization of Cx43 (connexin 43) at the intercalated disk. In contrast, in mice with gain of function of the IL-1 signaling pathway, L casei cell wall extract induced spontaneous ventricular tachycardia and premature deaths. CONCLUSIONS: Our results characterize the electrophysiological abnormalities associated with L casei cell wall extract-induced KD and show that IL-1Ra is more effective in preventing KD-induced myocardial dysfunction and arrhythmias than anti-TNFα therapy. These findings support the advancement of clinical trials using IL-1Ra in patients with KD.


Assuntos
Cardiomiopatias , Síndrome de Linfonodos Mucocutâneos , Taquicardia Ventricular , Vasculite , Humanos , Animais , Camundongos , Síndrome de Linfonodos Mucocutâneos/complicações , Síndrome de Linfonodos Mucocutâneos/tratamento farmacológico , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Fator de Necrose Tumoral alfa , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/prevenção & controle , Taquicardia Ventricular/prevenção & controle , Taquicardia Ventricular/complicações
8.
Curr Probl Cardiol ; 48(12): 101995, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37516331

RESUMO

Endomyocardiofibrosis (EMF) is a restrictive cardiomyopathy characterized by subendocardial fibrosis due to eosinophilic myocardial infiltration. EMF may commonly present with heart failure (HF) or atrial fibrillation (AF). Immunosuppression can be effective in early stages, but not in the chronic phase. Our objective was to describe the characteristics of EMF patients in the Americas. This registry is a retrospective multicenter cross-sectional study including patients ≥18 years-old with EMF diagnosed by imaging methods, according to the Mocumbi criteria. Clinical, biochemical, and imaging variables were analyzed. On the 54 patients included, 28 (52%) were male with an age of 47 years. The etiology was idiopathic in 47 (87%) patients, familial in 4 (7%), and secondary to chemotherapy in 2 (3.5%). We detected a history of HF in 41 patients (76%), AF in 19 (35%), and ischemic stroke in 8 (15%). The diagnosis was made by echocardiography in all patients, and 38% had Cardiac Resonance or Computed Tomography. Thirty-five patients (65%) presented a left ventricular ejection fraction ≥50%, 11 (21%) severe mitral regurgitation, and 18 (33%) severe tricuspid regurgitation. In 17 patients (32%) the diagnosis was confirmed by endomyocardial biopsy. Among medical therapy, 72% received beta-blockers, 63% vasodilators, 65% mineralocorticoid antagonists, 7.4% SGLT2 inhibitors, and 11% corticosteroids. Subendocardial resection was performed in 9 (16%) patients and mitral valve replacement in 11 (20%) patients. In conclusion, EMF patients had a high prevalence of HF, AF, and embolic events. The diagnosis was frequently made in an advanced stage when HF management and surgery were the only effective treatments.


Assuntos
Fibrilação Atrial , Insuficiência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade , Adolescente , Feminino , Volume Sistólico , Estudos Transversais , Função Ventricular Esquerda , Miocárdio , Ecocardiografia , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/etiologia , Fibrilação Atrial/patologia , Estudos Multicêntricos como Assunto
10.
Artigo em Inglês | MEDLINE | ID: mdl-37273847

RESUMO

Dahl Salt-Sensitive (DSS) rats develop heart failure with preserved ejection fraction (HFpEF) when fed a high-salt (8 % NaCl) diet. Hypertension-induced inflammation and subsequent ventricular fibrosis are believed to underlie the development of HFpEF. We investigated the role of diet modification in the progression of HFpEF using male DSS rats, fed either a high-salt diet from7 weeks of age to induce HFpEF, ora normal-salt (0.3% NaCl) diet as controls. After echocardiographic confirmation of diastolic dysfunction at 14-15 weeks of age along with HF manifestations, the HFpEF rats were randomly assigned to either continue a high-salt diet or switch to a normal-salt diet for an additional 4 weeks. HFpEF rats with diet modification showed improved diastolic function (reduced E/E' ratio in echocardiogram), increased functional capacity (increased treadmill exercise distance), and reduced pulmonary congestions (lung/body weight ratio), compared to high-salt-fed HFpEF rats. Systolic blood pressure remained high (~200 mmHg), and ventricular hypertrophy remained unchanged. Ventricular arrhythmia inducibility (100 % inducible) and corrected QT interval (on ECG) did not change in HFpEF rats after diet modification. HFpEF rats with diet modification showed prolonged survival and reduced ventricular fibrosis (Masson's trichrome staining) compared to high-salt-fed HFpEF rats. Hence, the modification of diet (from high-salt to normal-salt diet) reversed HFpEF phenotypes without affecting blood pressure or ventricular hypertrophy.

11.
Heart Lung Circ ; 32(7): 844-851, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37353457

RESUMO

Ventricular arrhythmias (VAs) represent a major cause of sudden cardiac death and afflict patients with heart failure from both ischaemic and non-ischaemic origins, and inherited cardiomyopathies. Current VA management, including anti-arrhythmic medications, autonomic modulation, implantable cardioverter-defibrillator implantation, and catheter ablation, remains suboptimal. Catheter ablation may even cause significant cardiomyocyte loss. Cell-based therapies and exosome treatment have been proposed as promising strategies to lessen cardiomyocyte death, modulate immune reaction, and reduce myocardial scarring, and, therefore, are potentially beneficial in treating VAs. In this review, we summarise the current cornerstones of VA management. We also discuss recent advances and ongoing evidence regarding cell-based and exosome therapy, with special attention to VA treatment.


Assuntos
Cardiomiopatias , Ablação por Cateter , Desfibriladores Implantáveis , Taquicardia Ventricular , Humanos , Desfibriladores Implantáveis/efeitos adversos , Arritmias Cardíacas/terapia , Morte Súbita Cardíaca/etiologia , Cardiomiopatias/complicações , Antiarrítmicos , Ablação por Cateter/efeitos adversos , Taquicardia Ventricular/cirurgia
12.
JACC Clin Electrophysiol ; 9(2): 147-158, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36858679

RESUMO

BACKGROUND: Atrial fibrillation (AF) is a common comorbidity in heart failure with preserved ejection fraction (HFpEF) patients. To date, treatments for HFpEF-related AF have been limited to anti-arrhythmic drugs and ablation. Here we examined the effects of immortalized cardiosphere-derived extracellular vesicles (imCDCevs) in rats with HFpEF. OBJECTIVES: This study sought to investigate the mechanisms of AF in HFpEF and probe the potential therapeutic efficacy of imCDCevs in HFpEF-related AF. METHODS: Dahl salt-sensitive rats were fed a high-salt diet for 7 weeks to induce HFpEF and randomized to receive imCDCevs (n = 18) or vehicle intravenously (n = 14). Rats fed a normal-salt diet were used as control animals (n = 26). A comprehensive characterization of atrial remodeling was conducted using functional and molecular techniques. RESULTS: HFpEF-verified animals showed significantly higher AF inducibility (84%) compared with control animals (15%). These changes were associated with prolonged action potential duration, slowed conduction velocity (connexin 43 lateralization), and fibrotic remodeling in the left atrium of HFpEF compared with control animals. ImCDCevs reversed adverse electrical remodeling (restoration of action potential duration to control levels and reorganization of connexin 43) and reduced AF inducibility (33%). In addition, fibrosis, inflammation, and oxidative stress, which are major pathological AF drivers, were markedly attenuated in imCDCevs-treated animals. Importantly, these effects occurred without changes in blood pressure and diastolic function. CONCLUSIONS: Thus, imCDCevs attenuated adverse remodeling, and prevented AF in a rat model of HFpEF.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Vesículas Extracelulares , Insuficiência Cardíaca , Animais , Ratos , Conexina 43 , Ratos Endogâmicos Dahl , Volume Sistólico
13.
iScience ; 26(1): 105857, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36624836

RESUMO

Cardiomyocytes play key roles during cardiogenesis, but have poorly understood features, especially in prenatal stages. Here, we characterized human prenatal cardiomyocytes, 6.5-7 weeks post-conception, by integrating single-cell RNA sequencing, spatial transcriptomics, and ligand-receptor interaction information. Using a computational workflow developed to dissect cell type heterogeneity, localize cell types, and explore their molecular interactions, we identified eight types of developing cardiomyocyte, more than double compared to the ones identified in the Human Developmental Cell Atlas. These have high variability in cell cycle activity, mitochondrial content, and connexin gene expression, and are differentially distributed in the ventricles, including outflow tract, and atria, including sinoatrial node. Moreover, cardiomyocyte ligand-receptor crosstalk is mainly with non-cardiomyocyte cell types, encompassing cardiogenesis-related pathways. Thus, early prenatal human cardiomyocytes are highly heterogeneous and develop unique location-dependent properties, with complex ligand-receptor crosstalk. Further elucidation of their developmental dynamics may give rise to new therapies.

14.
Cell Rep Med ; 3(12): 100871, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36543116

RESUMO

Chemically modified mRNA (CMmRNA) with selectively altered nucleotides are used to deliver transgenes, but translation efficiency is variable. We have transfected CMmRNA encoding human T-box transcription factor 18 (CMmTBX18) into heart cells or the left ventricle of rats with atrioventricular block. TBX18 protein expression from CMmTBX18 is weak and transient, but Acriflavine, an Argonaute 2 inhibitor, boosts TBX18 levels. Small RNA sequencing identified two upregulated microRNAs (miRs) in CMmTBX18-transfected cells. Co-administration of miR-1-3p and miR-1b antagomiRs with CMmTBX18 prolongs TBX18 expression in vitro and in vivo and is sufficient to generate electrical stimuli capable of pacing the heart. Different suppressive miRs likewise limit the expression of VEGF-A CMmRNA. Cells therefore resist translation of CMmRNA therapeutic transgenes by upregulating suppressive miRs. Blockade of suppressive miRs enhances CMmRNA expression of genes driving biological pacing or angiogenesis. Such counterstrategies constitute an approach to boost the efficacy and efficiency of CMmRNA therapies.


Assuntos
MicroRNAs , Animais , Ratos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Relógios Biológicos , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
15.
Am J Physiol Heart Circ Physiol ; 323(5): H892-H903, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36083797

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is defined by increased left ventricular (LV) stiffness, impaired vascular compliance, and fibrosis. Although systemic inflammation, driven by comorbidities, has been proposed to play a key role, the precise pathogenesis remains elusive. To test the hypothesis that inflammation drives endothelial dysfunction in HFpEF, we used cardiosphere-derived cells (CDCs), which reduce inflammation and fibrosis, improving function, structure, and survival in HFpEF rats. Dahl salt-sensitive rats fed a high-salt diet developed HFpEF, as manifested by diastolic dysfunction, systemic inflammation, and accelerated mortality. Rats were randomly allocated to receive intracoronary infusion of CDCs or vehicle. Two weeks later, inflammation, oxidative stress, and endothelial function were analyzed. Single-cell RNA sequencing of heart tissue was used to assay transcriptomic changes. CDCs improved endothelial-dependent vasodilation while reducing oxidative stress and restoring endothelial nitric oxide synthase (eNOS) expression. RNA sequencing revealed CDC-induced attenuation of pathways underlying endothelial cell leukocyte binding and innate immunity. Exposure of endothelial cells to CDC-secreted extracellular vesicles in vitro reduced VCAM-1 protein expression and attenuated monocyte adhesion and transmigration. Cell therapy with CDCs corrects diastolic dysfunction, reduces oxidative stress, and restores vascular reactivity. These findings lend credence to the hypothesis that inflammatory changes of the vascular endothelium are important, if not central, to HFpEF pathogenesis.NEW & NOTEWORTHY We tested the concept that inflammation of endothelial cells is a major pathogenic factor in HFpEF. CDCs are heart-derived cell products with verified anti-inflammatory therapeutic properties. Infusion of CDCs reduced oxidative stress, restored eNOS abundance, lowered monocyte levels, and rescued the expression of multiple disease-associated genes, thereby restoring vascular reactivity. The salutary effects of CDCs support the hypothesis that inflammation of endothelial cells is a proximate driver of HFpEF.


Assuntos
Insuficiência Cardíaca , Hipertensão , Animais , Anti-Inflamatórios/farmacologia , Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos , Células Endoteliais/metabolismo , Fibrose , Inflamação/patologia , Óxido Nítrico Sintase Tipo III , Ratos , Ratos Endogâmicos Dahl , Volume Sistólico , Molécula 1 de Adesão de Célula Vascular
16.
Heart ; 108(20): 1661-1662, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35906028
17.
Heart Rhythm ; 19(9): 1423-1432, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35381379

RESUMO

BACKGROUND: The interaction of the pulmonary vein (PV) and putative nonpulmonary triggers of atrial fibrillation (AF) remains unclear and has yet to translate into patient-tailored ablation strategies. OBJECTIVE: The purpose of this study was to use noncontact mapping to detail the global conduction patterns in paroxysmal and persistent AF and how they are modified during PV ablation. METHODS: Forty patients during AF ablation underwent mapping using a noncontact catheter (AcQMap, Acutus Medical, Inc., Carlsbad, CA) before and after PV isolation (PVI). Propagation history maps were analyzed postprocedure for each patient to categorize conduction patterns into focal, organized reentrant, and disorganized patterns (F-Patterns, O-Patterns, and D-Patterns, respectively). RESULTS: Activation patterns identified by using a noncontact mapping system can be subclassified from 3 main patterns into subtypes (macroreentrant and localized reentrant [MR and LR] subtypes and disorganized 1 and disorganized 2 [D1 and D2] subtypes). Persistent AF demonstrated more D-Patterns and less O-Patterns and F-Patterns than did paroxysmal AF. In addition, patients with PAF inducible after PVI demonstrated a higher region number and higher prevalence of MR subtypes than did those noninducible. PVs remained the critical region and included almost one-third of all patterns across any AF types. PVI was effective to eliminate PV-related functional phenotypes and affected recurrence with other patterns. CONCLUSION: Activation patterns identified using AcQMap can be classified into 3 main patterns (F-Patterns, O-Patterns, and D-Patterns) as well as subtypes (MR and LR subtypes and D1 and D2 subtypes). PerAF was different from PAF in demonstrating a higher region number and higher prevalence of D-Patterns but a lower region number and lower prevalence of O-Patterns and F-Patterns.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Ablação por Cateter/métodos , Humanos , Veias Pulmonares/cirurgia , Recidiva , Resultado do Tratamento
18.
Eur Heart J ; 43(22): 2139-2156, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35262692

RESUMO

AIMS: Cardiomyopathy patients are prone to ventricular arrhythmias (VA) and sudden cardiac death. Current therapies to prevent VA include radiofrequency ablation to destroy slowly conducting pathways of viable myocardium which support re-entry. Here, we tested the reverse concept, namely that boosting local tissue viability in zones of slow conduction might eliminate slow conduction and suppress VA in ischaemic cardiomyopathy. METHODS AND RESULTS: Exosomes are extracellular vesicles laden with bioactive cargo. Exosomes secreted by cardiosphere-derived cells (CDCEXO) reduce scar and improve heart function after intramyocardial delivery. In a VA-prone porcine model of ischaemic cardiomyopathy, we injected CDCEXO or vehicle into zones of delayed conduction defined by electroanatomic mapping. Up to 1-month post-injection, CDCEXO, but not the vehicle, decreased myocardial scar, suppressed slowly conducting electrical pathways, and inhibited VA induction by programmed electrical stimulation. In silico reconstruction of electrical activity based on magnetic resonance images accurately reproduced the suppression of VA inducibility by CDCEXO. Strong anti-fibrotic effects of CDCEXO, evident histologically and by proteomic analysis from pig hearts, were confirmed in a co-culture assay of cardiomyocytes and fibroblasts. CONCLUSION: Biological substrate modification by exosome injection may be worth developing as a non-destructive alternative to conventional ablation for the prevention of recurrent ventricular tachyarrhythmias.


Assuntos
Cardiomiopatias , Ablação por Cateter , Isquemia Miocárdica , Taquicardia Ventricular , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/prevenção & controle , Cardiomiopatias/cirurgia , Ablação por Cateter/métodos , Cicatriz/prevenção & controle , Humanos , Isquemia Miocárdica/cirurgia , Isquemia Miocárdica/terapia , Proteômica , Suínos , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/prevenção & controle
19.
Circulation ; 145(1): 45-60, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34905696

RESUMO

BACKGROUND: The ability to increase heart rate during exercise and other stressors is a key homeostatic feature of the sinoatrial node (SAN). When the physiological heart rate response is blunted, chronotropic incompetence limits exercise capacity, a common problem in patients with heart failure with preserved ejection fraction (HFpEF). Despite its clinical relevance, the mechanisms of chronotropic incompetence remain unknown. METHODS: Dahl salt-sensitive rats fed a high-salt diet and C57Bl6 mice fed a high-fat diet and an inhibitor of constitutive nitric oxide synthase (Nω-nitro-L-arginine methyl ester [L-NAME]; 2-hit) were used as models of HFpEF. Myocardial infarction was created to induce HF with reduced ejection fraction. Rats and mice fed with a normal diet or those that had a sham surgery served as respective controls. A comprehensive characterization of SAN function and chronotropic response was conducted by in vivo, ex vivo, and single-cell electrophysiologic studies. RNA sequencing of SAN was performed to identify transcriptomic changes. Computational modeling of biophysically-detailed human HFpEF SAN was created. RESULTS: Rats with phenotypically-verified HFpEF exhibited limited chronotropic response associated with intrinsic SAN dysfunction, including impaired ß-adrenergic responsiveness and an alternating leading pacemaker within the SAN. Prolonged SAN recovery time and reduced SAN sensitivity to isoproterenol were confirmed in the 2-hit mouse model. Adenosine challenge unmasked conduction blocks within the SAN, which were associated with structural remodeling. Chronotropic incompetence and SAN dysfunction were also found in rats with HF with reduced ejection fraction. Single-cell studies and transcriptomic profiling revealed HFpEF-related alterations in both the "membrane clock" (ion channels) and the "Ca2+ clock" (spontaneous Ca2+ release events). The physiologic impairments were reproduced in silico by empirically-constrained quantitative modeling of human SAN function. CONCLUSIONS: Chronotropic incompetence and SAN dysfunction were seen in both models of HF. We identified that intrinsic abnormalities of SAN structure and function underlie the chronotropic response in HFpEF.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Nó Sinoatrial/anormalidades , Volume Sistólico/fisiologia , Animais , Humanos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...