Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 22(11): 1343-1351, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37578807

RESUMO

Adjusting the molecular size, the valency and the pharmacokinetics of drug conjugates are as many leverages to improve their therapeutic window, notably by affecting tumor penetration, renal clearance, and short systemic exposure. In that regard, small tumor-targeting ligands are gaining attention. In this study, we demonstrate the benefits of the small Nanofitin alternative scaffolds (7 kDa) as selective tumor-targeting modules for the generation of drug conjugates, focusing on Nanofitins B10 and D8 directed against the EGFR. Owing to their small size and monovalent format, the two Nanofitins displayed a fast and deep tumor penetration in EGFR-positive A431 xenografts in BALB/c nude mice after intravenous administration, yielding to a targeting of respectively 67.9% ± 14.1 and 98.9% ± 0.7 of the tumor cells as demonstrated by IHC. Conjugation with the monomethyl auristatin E toxin provided homogeneous Nanofitin-drug conjugates, with an overall yield of ≥97%, for in vivo assessment in a curative xenograft model using bioluminescent, EGFR-positive, A431 cells in BALB/c nude mice. Internalization was found critical for efficient release of the toxin. Hence, the intravenous administration of the D8-based construct showed significant antitumor effect in vivo as determined by monitoring tumor volumes and bioluminescence levels over 2 months.


Assuntos
Receptores ErbB , Neoplasias , Humanos , Animais , Camundongos , Xenoenxertos , Camundongos Nus , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Ther ; 31(10): 2861-2871, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37652011

RESUMO

Nanofitins are small and hyperthermostable alternative protein scaffolds that display physicochemical properties making them suitable for the development of topical therapeutics, notably for the treatment of pulmonary infectious diseases. Local administration of biologics to the lungs involves a particularly stressful step of nebulization that is poorly tolerated by most antibodies, which limits their application by this delivery route. During the COVID-19 pandemic, we generated anti-SARS-CoV-2 monomeric Nanofitins of high specificity for the spike protein. Hit Nanofitin candidates were identified based on their binding properties with punctual spike mutants and assembled into a linear multimeric construction constituting of four different Nanofitins, allowing the generation of a highly potent anti-SARS-CoV-2 molecule. The therapeutic efficacy of the multimeric assembly was demonstrated both in in vitro and in vivo models. Interestingly, the neutralization mechanism of the multimeric construction seems to involve a particular conformation switch of the spike trimer. In addition, we reported the stability and the conserved activity of the tetrameric construction after nebulization. This advantageous developability feature for pulmonary administration associated with the ease of assembly, as well as the fast generation process position the Nanofitin technology as a potential therapeutic solution for emerging infectious diseases.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , Pulmão , Anticorpos Neutralizantes , Anticorpos Antivirais
3.
Biomolecules ; 13(4)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37189383

RESUMO

Re-education of the tumor microenvironment with immune checkpoint inhibitors (ICI) has provided the most significant advancement in cancer management, with impressive efficacy and durable response reported. However, low response rates and a high frequency of immune-related adverse events (irAEs) remain associated with ICI therapies. The latter can be linked to their high affinity and avidity for their target that fosters on-target/off-tumor binding and subsequent breaking of immune self-tolerance in normal tissues. Many multispecific protein formats have been proposed to increase the tumor cell's selectivity of ICI therapies. In this study, we explored the engineering of a bispecific Nanofitin by the fusion of an anti-epidermal growth factor receptor (EGFR) and anti-programmed cell death ligand 1 (PDL1) Nanofitin modules. While lowering the affinity of the Nanofitin modules for their respective target, the fusion enables the simultaneous engagement of EGFR and PDL1, which translates into a selective binding to tumor cells co-expressing EGFR and PDL1 only. We demonstrated that affinity-attenuated bispecific Nanofitin could elicit PDL1 blockade exclusively in an EGFR-directed manner. Overall, the data collected highlight the potential of this approach to enhance the selectivity and safety of PDL1 checkpoint inhibition.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptores ErbB/metabolismo , Neoplasias/tratamento farmacológico , Tolerância Imunológica , Microambiente Tumoral
4.
Biomolecules ; 12(3)2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35327625

RESUMO

Uncontrolled complement activation contributes to multiple immune pathologies. Although synthetic compstatin derivatives targeting C3 and C3b are robust inhibitors of complement activation, their physicochemical and molecular properties may limit access to specific organs, development of bifunctional moieties, and therapeutic applications requiring transgenic expression. Complement-targeting therapeutics containing only natural amino acids could enable multifunctional pharmacology, gene therapies, and targeted delivery for underserved diseases. A Nanofitin library of hyperthermophilic protein scaffolds was screened using ribosome display for C3/C3b-targeting clones mimicking compstatin pharmacology. APL-1030, a recombinant 64-residue Nanofitin, emerged as the lead candidate. APL-1030 is thermostable, binds C3 (KD, 1.59 nM) and C3b (KD, 1.11 nM), and inhibits complement activation via classical (IC50 = 110.8 nM) and alternative (IC50 = 291.3 nM) pathways in Wieslab assays. Pharmacologic activity (determined by alternative pathway inhibition) was limited to primate species of tested sera. C3b-binding sites of APL-1030 and compstatin were shown to overlap by X-ray crystallography of C3b-bound APL-1030. APL-1030 is a novel, high-affinity inhibitor of primate C3-mediated complement activation developed from natural amino acids on the hyperthermophilic Nanofitin platform. Its properties may support novel drug candidates, enabling bifunctional moieties, gene therapy, and tissue-targeted C3 pharmacologics for diseases with high unmet need.


Assuntos
Ativação do Complemento , Complemento C3 , Aminoácidos , Animais , Sítios de Ligação , Complemento C3/metabolismo , Cristalografia por Raios X
5.
Peptides ; 152: 170760, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35150805

RESUMO

A new strategy of peptide half-life extension has been evaluated. We investigated libraries of a small and very stable protein scaffold called Nanofitin, capable of high affinity for protein targets. We have identified Nanofitins targeting Human and mouse Serum Albumin, which could significantly improve the pharmacokinetics of an active associated peptide, mobilizing the patient's own albumin without external source. To demonstrate the impact of this approach on half-life extension, a genetic fusion of an Exenatide peptide with an Albumin Binding Nanofitin (ABNF) was performed. Specific activity of Exenatide-ABNF was measured and unaffected by the fusion. In vivo mice results provided convincing data (t½ of 8 min for Exenatide peptide compared to 20 h for Exenatide-ABNF) with sustained pharmacological activity over 3 days. This study constitutes a proof-of-concept of in vivo half-life extension of a biologic using an ABNF. Besides, the absence of cysteine in the Nanofitin scaffold, which is therefore devoid of structuring disulfide bonds, allows manufacturing in microbial cost effective systems.


Assuntos
Produtos Biológicos , Peptídeos , Albuminas , Animais , Exenatida , Meia-Vida , Camundongos , Peptídeos/química
6.
Int J Cancer ; 148(12): 3019-3031, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33506516

RESUMO

The presence of an inactivating heat shock protein 110 (HSP110) mutation in colorectal cancers has been correlated with an excellent prognosis and with the ability of HSP110 to favor the formation of tolerogenic (M2-like) macrophages. These clinical and experimental results suggest a potentially powerful new strategy against colorectal cancer: the inhibition of HSP110. In this work, as an alternative to neutralizing antibodies, Nanofitins (scaffold ~7 kDa proteins) targeting HSP110 were isolated from the screening of a synthetic Nanofitin library, and their capacity to bind (immunoprecipitation, biolayer interferometry) and to inhibit HSP110 was analyzed in vitro and in vivo. Three Nanofitins were found to inhibit HSP110 chaperone activity. Interestingly, they share a high degree of homology in their variable domain and target the peptide-binding domain of HSP110. In vitro, they inhibited the ability of HSP110 to favor M2-like macrophages. The Nanofitin with the highest affinity, A-C2, was studied in the CT26 colorectal cancer mice model. Our PET/scan experiments demonstrate that A-C2 may be localized within the tumor area, in accordance with the reported HSP110 abundance in the tumor microenvironment. A-C2 treatment reduced tumor growth and was associated with an increase in immune cells infiltrating the tumor and particularly cytotoxic macrophages. These results were confirmed in a chicken chorioallantoic membrane tumor model. Finally, we showed the complementarity between A-C2 and an anti-PD-L1 strategy in the in vivo and in ovo tumor models. Overall, Nanofitins appear to be promising new immunotherapeutic lead compounds.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Proteínas de Choque Térmico HSP110/antagonistas & inibidores , Macrófagos/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/metabolismo , Feminino , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Biblioteca de Peptídeos , Tomografia por Emissão de Pósitrons , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Bioconjug Chem ; 28(9): 2361-2371, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28825794

RESUMO

Epidermal growth-factor receptor (EGFR) is involved in cell growth and proliferation and is over-expressed in malignant tissues. Although anti-EGFR-based immunotherapy became a standard of care for patients with EGFR-positive tumors, this strategy of addressing cancer tumors by targeting EGFR with monoclonal antibodies is less-developed for patient diagnostic and monitoring. Indeed, antibodies exhibit a slow blood clearance, which is detrimental for positron emission tomography (PET) imaging. New molecular probes are proposed to overcome such limitations for patient monitoring, making use of low-molecular-weight protein scaffolds as alternatives to antibodies, such as Nanofitins with better pharmacokinetic profiles. Anti-EGFR Nanofitin B10 was reformatted by genetic engineering to exhibit a unique cysteine moiety at its C-terminus, which allows the development of a fast and site-specific radiolabeling procedure with 18F-4-fluorobenzamido-N-ethylamino-maleimide (18F-FBEM). The in vivo tumor targeting and imaging profile of the anti-EGFR Cys-B10 Nanofitin was investigated in a double-tumor xenograft model by static small-animal PET at 2 h after tail-vein injection of the radiolabeled Nanofitin 18F-FBEM-Cys-B10. The image showed that the EGFR-positive tumor (A431) is clearly delineated in comparison to the EGFR-negative tumor (H520) with a significant tumor-to-background contrast. 18F-FBEM-Cys-B10 demonstrated a significantly higher retention in A431 tumors than in H520 tumors at 2.5 h post-injection with a A431-to-H520 uptake ratio of 2.53 ± 0.18 and a tumor-to-blood ratio of 4.55 ± 0.63. This study provides the first report of Nanofitin scaffold used as a targeted PET radiotracer for in vivo imaging of EGFR-positive tumor, with the anti-EGFR B10 Nanofitin used as proof-of-concept. The fast generation of specific Nanofitins via a fully in vitro selection process, together with the excellent imaging features of the Nanofitin scaffold, could facilitate the development of valuable PET-based companion diagnostics.


Assuntos
Anticorpos Monoclonais/química , Cisteína/química , Receptores ErbB/análise , Maleimidas/química , Neoplasias/diagnóstico , Tomografia por Emissão de Pósitrons/métodos , Animais , Anticorpos Monoclonais/farmacocinética , Linhagem Celular Tumoral , Cisteína/farmacocinética , Feminino , Humanos , Maleimidas/farmacocinética , Camundongos Endogâmicos BALB C , Camundongos Nus
8.
Nucl Med Biol ; 51: 33-39, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28575696

RESUMO

INTRODUCTION: Nanofitins are low molecular weight, single chain and cysteine-free protein scaffolds able to selectively bind a defined biological target. They derive from Sac7d bacterial protein family and are highly stable over a wide range of pH (0-13) and temperature (Tm ~80°C). Their extreme stability, low cost of production and high tolerability for chemical coupling make Nanofitins a very interesting alternative to antibodies and their fragments. Here, a hexahistidine tagged model Nanofitin (H4) directed against hen egg white lysozyme was radiolabelled and injected in mice to provide a baseline biodistribution and pharmacokinetic profiles to support future Nanofitin development programs. METHOD: A single cysteine residue has been genetically inserted in a model Nanofitin and its regioselective radiolabelling has been performed with 4-[18F]fluorobenzamido-N-ethylamino-maleimide ([18F]FBEM). The synthesis of [18F]FBEM has been completely implemented on a radiosynthesis unit (FastLab) including HPLC purification and formulation. Coupling with the [18F]FBEM has been achieved on a solid support (Ni magnetic beads) allowing rapid purification at room temperature without organic solvent. PET-MRI studies on C57BL/6 mice were conducted after injection of [18F]FBEM-Cys-H4 in order to access the biodistribution of this Nanofitin model. RESULTS: Radiochemical yield (decay corrected) of 54±7% (n=4) was obtained after optimization for coupling the [18F]FBEM to Nanofitin. Pharmacokinetics results of [18F]FBEM-Cys-H4 revealed a fast clearance through the liver and the kidneys. CONCLUSION: An efficient new method on Ni magnetic beads was developed to radiolabelled his-tagged biomolecules with [18F]FBEM. This procedure was applied on a Nanofitin model Cys-H4 and biodistribution kinetic studies were achieved to evaluate the potential use of Nanofitin for diagnostic imaging. Fast clearance indicates that Nanofitins represent very interesting tools for diagnostic imaging.


Assuntos
Proteínas de Bactérias/química , Imãs/química , Maleimidas/química , Microesferas , Níquel/química , Tomografia por Emissão de Pósitrons/métodos , Animais , Marcação por Isótopo , Masculino , Maleimidas/farmacocinética , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Conformação Proteica , Controle de Qualidade , Radioquímica , Estereoisomerismo , Distribuição Tecidual
9.
Biotechnol Lett ; 38(5): 767-72, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26758722

RESUMO

OBJECTIVES: To design a new system for the in vivo phosphorylation of proteins in Escherichia coli using the co-expression of the α-subunit of casein kinase II (CKIIα) and a target protein, (Nanofitin) fused with a phosphorylatable tag. RESULTS: The level of the co-expressed CKIIα was controlled by the arabinose promoter and optimal phosphorylation was obtained with 2 % (w/v) arabinose as inductor. The effectiveness of the phosphorylation system was demonstrated by electrophoretic mobility shift assay (NUT-PAGE) and staining with a specific phosphoprotein-staining gel. The resulting phosphorylated tag was also used to purify the phosphoprotein by immobilized metal affinity chromatography, which relies on the specific interaction of phosphate moieties with Fe(III). CONCLUSION: The use of a single tag for both the purification and protein array anchoring provides a simple and straightforward system for protein analysis.


Assuntos
Caseína Quinase II/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/isolamento & purificação , Proteínas/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Caseína Quinase II/genética , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Fosforilação , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
10.
PLoS One ; 10(11): e0142304, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26539718

RESUMO

With the continuous diversification of recombinant DNA technologies, the possibilities for new tailor-made protein engineering have extended on an on-going basis. Among these strategies, the use of the green fluorescent protein (GFP) as a fusion domain has been widely adopted for cellular imaging and protein localization. Following the lead of the direct head-to-tail fusion of GFP, we proposed to provide additional features to recombinant proteins by genetic fusion of artificially derived binders. Thus, we reported a GFP-ready fusion tag consisting of a small and robust fusion-friendly anti-GFP Nanofitin binding domain as a proof-of-concept. While limiting steric effects on the carrier, the GFP-ready tag allows the capture of GFP or its blue (BFP), cyan (CFP) and yellow (YFP) alternatives. Here, we described the generation of the GFP-ready tag from the selection of a Nanofitin variant binding to the GFP and its spectral variants with a nanomolar affinity, while displaying a remarkable folding stability, as demonstrated by its full resistance upon thermal sterilization process or the full chemical synthesis of Nanofitins. To illustrate the potential of the Nanofitin-based tag as a fusion partner, we compared the expression level in Escherichia coli and activity profile of recombinant human tumor necrosis factor alpha (TNFα) constructs, fused to a SUMO or GFP-ready tag. Very similar expression levels were found with the two fusion technologies. Both domains of the GFP-ready tagged TNFα were proved fully active in ELISA and interferometry binding assays, allowing the simultaneous capture by an anti-TNFα antibody and binding to the GFP, and its spectral mutants. The GFP-ready tag was also shown inert in a L929 cell based assay, demonstrating the potent TNFα mediated apoptosis induction by the GFP-ready tagged TNFα. Eventually, we proposed the GFP-ready tag as a versatile capture and labeling system in addition to expected applications of anti-GFP Nanofitins (as illustrated with previously described state-of-the-art anti-GFP binders applied to living cells and in vitro applications). Through a single fusion domain, the GFP-ready tagged proteins benefit from subsequent customization within a wide range of fluorescence spectra upon indirect binding of a chosen GFP variant.


Assuntos
Proteínas de Fluorescência Verde/genética , Proteínas Luminescentes/genética , Proteínas Recombinantes de Fusão/genética , Apoptose/genética , Escherichia coli/genética , Fluorescência , Engenharia Genética/métodos , Humanos , Fator de Necrose Tumoral alfa/genética
11.
Methods Mol Biol ; 928: 197-219, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22956144

RESUMO

RNA is unique in nanoscale fabrication due to its amazing diversity of function and structure. RNA nanoparticles can be fabricated with a level of simplicity characteristic of DNA while possessing versatile tertiary structure and catalytic function similar to that of proteins. A large variety of single stranded loops are suitable for inter- and intramolecular interactions, serving as mounting dovetails in self-assembly without the need for external linking dowels. Novel properties of RNA nanoparticles have been explored for treatment and detection of diseases and various other realms. The higher thermodynamic stability, holding of noncanonical base pairing, stronger folding due to base stacking properties, and distinctive in vivo attributes make RNA unique in comparison to DNA. Indeed, the potential application of RNA nanotechnology in therapeutics is an exciting area of research. The use of RNAi in biomedical research has opened up new possibilities to silence or regulate the biological function of individual genes. Small interfering RNA (siRNA) has been extensively explored to genetically manipulate the expression in vitro and in vivo of particular genes identified to play a key role in cancerous or viral diseases. However, the efficient silencing of the desired gene depends upon efficient delivery of siRNA to targeted cells, as well as in vivo stability. In this chapter, we use the bacteriophage phi29 motor pRNA-derived nanocarrier as a polyvalent targeted delivery system, introduce the potential of RNA-based therapeutics using nanobiotechnology or nanotechnology methods with the fabrication and modification of pRNA nanoparticles, and highlight its potential to become a valuable research tool and viable clinical approach for gene therapy.


Assuntos
Nanopartículas/química , RNA Interferente Pequeno/genética , DNA Viral/genética , Sistemas de Liberação de Medicamentos , Nanotecnologia/métodos , RNA Interferente Pequeno/administração & dosagem
12.
J Biol Inorg Chem ; 17(3): 399-407, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22160486

RESUMO

A phosphorylatable tag was designed and fused at the C-terminal end of proteins, which allowed efficient and oriented immobilization of capture proteins on glass substrates coated with a zirconium phosphonate monolayer. The concept is demonstrated using Nanofitin directed against lysozyme. This peptide tag (DSDSSSEDE) contains four serines in an acidic environment, which favored its in vitro phosphorylation by casein kinase II. The resulting phosphate cluster at the C-terminal end of the protein provided a specific, irreversible, and multipoint attachment to the zirconium surface. In a microarray format, the high surface coverage led to high fluorescence signal after incubation with Alexa Fluor 647 labeled lysozyme. The detection sensitivity of the microarray for the labeled target was below 50 pM, owing to the exceptionally low background staining, which resulted in high fluorescence signal to noise ratios. The performance of this new anchoring strategy using a zirconium phosphonate modified surface compares favorably with that of other types of microarray substrates, such as nitrocellulose-based or epoxide slides, which bind proteins in a nonoriented way.


Assuntos
Organofosfonatos/química , Peptídeos/química , Análise Serial de Proteínas , Engenharia de Proteínas , Zircônio/química , Sequência de Aminoácidos , Ensaio de Imunoadsorção Enzimática , Vidro/química , Dados de Sequência Molecular , Organofosfonatos/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Fosforilação , Ligação Proteica , Espectrometria de Massas por Ionização por Electrospray , Propriedades de Superfície , Zircônio/metabolismo
13.
Mol Ther ; 19(7): 1304-11, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21468002

RESUMO

The 117-nucleotide (nt) RNA, called the packaging RNA (pRNA) of bacteriophage phi29 DNA packaging motor, has been shown to be an efficient vector for the construction of RNA nanoparticles for the delivery of small interfering RNA (siRNA) into specific cancer or viral-infected cells. Currently, chemical synthesis of 117-nt RNA is not feasible commercially. In addition, labeling at specific locations on pRNA requires the understanding of its modular organization. Here, we report multiple approaches for the construction of a functional 117-base pRNA using two synthetic RNA fragments with variable modifications. The resulting bipartite pRNA was fully competent in associating with other interacting pRNAs to form dimers, as demonstrated by the packaging of DNA via the nanomotor and the assembly of phi29 viruses in vitro. The pRNA subunit assembled from bipartite fragments harboring siRNA or receptor-binding ligands were equally competent in assembling into dimers. The subunits carrying different functionalities were able to bind cancer cells specifically, enter the cell, and silence specific genes of interest. The pRNA nanoparticles were subsequently processed by Dicer to release the siRNA embedded within the nanoparticles. The results will pave the way toward the treatment of diseases using synthetic pRNA/siRNA chimeric nanoparticles.


Assuntos
Nanopartículas/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA/química , RNA/genética , Western Blotting , Linhagem Celular Tumoral , Citometria de Fluxo , Inativação Gênica/fisiologia , Humanos , Microscopia Confocal , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Methods ; 54(2): 204-14, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21320601

RESUMO

Recent advances in RNA nanotechnology have led to the emergence of a new field and brought vitality to the area of therapeutics [P. Guo, The emerging field of RNA nanotechnology, Nat. Nanotechnol., 2010]. Due to the complementary nature of the four nucleotides and its special catalytic activity, RNA can be manipulated with simplicity characteristic of DNA, while possessing versatile structure and diverse function similar to proteins. Loops and tertiary architecture serve as mounting dovetails or wedges to eliminate external linking dowels. Unique features in transcription, termination, self-assembly, self-processing, and acid-resistance enable in vivo production of nanoparticles harboring aptamer, siRNA, ribozyme, riboswitch, or other regulators for therapy, detection, regulation, and intracellular computation. The unique property of noncanonical base-pairing and stacking enables RNA to fold into well-defined structures for constructing nanoparticles with special functionalities. Bacteriophage phi29 DNA packaging motor is geared by a ring consisting of six packaging RNA (pRNA) molecules. pRNA is able to form a multimeric complex via the interaction of two reengineered interlocking loops. This unique feature makes it an ideal polyvalent vehicle for nanomachine fabrication, pathogen detection, and delivery of siRNA or other therapeutics. This review describes methods in using pRNA as a building block for the construction of RNA dimers, trimers, and hexamers as nanoparticles in medical applications. Methods for industrial-scale production of large and stable RNA nanoparticles will be introduced. The unique favorable PK (pharmacokinetics) profile with a half life (T(1/2)) of 5-10h comparing to 0.25 of conventional 2'-F siRNA, and advantageous in vivo features such as non-toxicity, non-induction of interferons or non-stimulating of cytokine response in animals will also be reviewed.


Assuntos
Aptâmeros de Nucleotídeos/química , Fagos Bacilares/genética , Nanopartículas , RNA Interferente Pequeno/administração & dosagem , RNA Viral/química , Animais , Aptâmeros de Nucleotídeos/genética , Humanos , Terapia de Alvo Molecular , Conformação de Ácido Nucleico , RNA Interferente Pequeno/farmacocinética , RNA Viral/genética
15.
ACS Nano ; 5(1): 237-46, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21155596

RESUMO

Both DNA and RNA can serve as powerful building blocks for bottom-up fabrication of nanostructures. A pioneering concept proposed by Ned Seeman 30 years ago has led to an explosion of knowledge in DNA nanotechnology. RNA can be manipulated with simplicity characteristic of DNA, while possessing noncanonical base-pairing, versatile function, and catalytic activity similar to proteins. However, standing in awe of the sensitivity of RNA to RNase degradation has made many scientists flinch away from RNA nanotechnology. Here we report the construction of stable RNA nanoparticles resistant to RNase digestion. The 2'-F (2'-fluoro) RNA retained its property for correct folding in dimer formation, appropriate structure in procapsid binding, and biological activity in gearing the phi29 nanomotor to package viral DNA and producing infectious viral particles. Our results demonstrate that it is practical to produce RNase-resistant, biologically active, and stable RNA for application in nanotechnology.


Assuntos
Empacotamento do DNA , DNA Viral/genética , Nanopartículas/química , Nanotecnologia/métodos , Estabilidade de RNA , RNA/química , Ribonucleases/metabolismo , Animais , Fagos Bacilares/genética , Fagos Bacilares/metabolismo , Fagos Bacilares/fisiologia , Sequência de Bases , Bovinos , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Dimerização , Concentração de Íons de Hidrogênio , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Pirimidinas/química , RNA/genética , RNA/isolamento & purificação , RNA/metabolismo , Transcrição Gênica , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/metabolismo , Montagem de Vírus
16.
Bioconjug Chem ; 20(12): 2270-7, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19928800

RESUMO

Two bisphosphonate adaptors were designed to immobilize histidine-tagged proteins onto glass substrates coated with a zirconium phosphonate monolayer, allowing efficient and oriented immobilization of capture proteins, affitins directed to lysozyme, on a microarray format. These bifunctional adaptors contain two phosphonic acid anchors at one extremity and either one nitrilotriacetic acid (NTA) or two NTA groups at the other. The phosphonate groups provide a stable bond to the zirconium interface by multipoint attachment and allow high density of surface coverage of the linkers as revealed by X-ray photoelectron spectroscopy (XPS). Reversible high-density capture of histidine-tagged proteins is shown by real-time surface plasmon resonance enhanced ellipsometry and in a microarray format using fluorescence detection of AlexaFluor 647-labeled target protein. The detection sensitivity of the microarray for the target protein was below 1 nM, despite the monolayer arrangement of the probes, due to very low background staining, which allows high fluorescent signal-to-noise ratio. The performance of these Ni-NTA-modified zirconium phosphonate coated slides compared favorably to other types of microarray substrates, including slides with a nitrocellulose-based matrix, epoxide slides, and epoxide slides functionalized with Ni-NTA groups. This immobilization strategy has a large potential to fix any histidine-tagged proteins on zirconium or titanium ion surfaces.


Assuntos
Proteínas Arqueais/química , Ácido Nitrilotriacético/química , Organofosfonatos/química , Análise Serial de Proteínas , Zircônio/química , Sítios de Ligação , Enzimas Imobilizadas/química , Histidina/química , Membranas Artificiais , Muramidase/química , Níquel/química , Ácido Nitrilotriacético/análogos & derivados , Ácido Nitrilotriacético/síntese química , Tamanho da Partícula , Proteínas Recombinantes/química , Sulfolobus acidocaldarius/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...