Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 9: 624553, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124016

RESUMO

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a major renal pathology provoked by the deletion of PKD1 or PKD2 genes leading to local renal tubule dilation followed by the formation of numerous cysts, ending up with renal failure in adulthood. In vivo, renal tubules are tightly packed, so that dilating tubules and expanding cysts may have mechanical influence on adjacent tubules. To decipher the role of this coupling between adjacent tubules, we developed a kidney-on-chip reproducing parallel networks of tightly packed tubes. This original microdevice is composed of cylindrical hollow tubes of physiological dimensions, parallel and closely packed with 100-200 µm spacing, embedded in a collagen I matrix. These multitubular systems were properly colonized by different types of renal cells with long-term survival, up to 2 months. While no significant tube dilation over time was observed with Madin-Darby Canine Kidney (MDCK) cells, wild-type mouse proximal tubule (PCT) cells, or with PCT Pkd1 +/- cells (with only one functional Pkd1 allele), we observed a typical 1.5-fold increase in tube diameter with isogenic PCT Pkd1 -/- cells, an ADPKD cellular model. This tube dilation was associated with an increased cell proliferation, as well as a decrease in F-actin stress fibers density along the tube axis. With this kidney-on-chip model, we also observed that for larger tube spacing, PCT Pkd1 -/- tube deformations were not spatially correlated with adjacent tubes whereas for shorter spacing, tube deformations were increased between adjacent tubes. Our device reveals the interplay between tightly packed renal tubes, constituting a pioneering tool well-adapted to further study kidney pathophysiology.

2.
Nanomaterials (Basel) ; 10(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260811

RESUMO

In the present work, droplet-based microfluidics and sol-gel techniques were combined to synthesize highly monodisperse zinc oxide (ZnO) microspheres, which can be doped easily and precisely with dyes, such as rhodamine B (RhB), and whose size can be finely tuned in the 10-30 µm range. The as-synthesized microparticles were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and confocal microscopy. The results reveal that the microspheres exhibit an excellent size monodispersity, hollow feature, and a porous shell with a thickness of about 0.6 µm, in good agreement with our calculations. We show in particular by means of fluorescence recovery after photobleaching (FRAP) analysis that the electric charges carried by ZnO nanoparticles primary units play a crucial role not just in the formation and structure of the synthesized ZnO microcapsules, but also in the confinement of dye molecules inside the microcapsules despite a demonstrated porosity of their shell in regards to the solvent (oil). Our results enable also the measurement of the diffusion coefficient of RhB molecules inside the microcapsules (DRhB=3.8×10-8 cm2/s), which is found two order of magnitude smaller than the literature value. We attribute such feature to a strong interaction between dye molecules and the electrical charges carried by ZnO nanoparticles. These results are important for potential applications in micro-thermometry (as shown recently in our previous study), photovoltaics, or photonics such as whispering gallery mode resonances.

3.
J Synchrotron Radiat ; 27(Pt 3): 772-778, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32381780

RESUMO

A lipid droplet (LD) core of a cell consists mainly of neutral lipids, triacylglycerols and/or steryl esters (SEs). The structuration of these lipids inside the core is still under debate. Lipid segregation inside LDs has been observed but is sometimes suggested to be an artefact of LD isolation and chemical fixation. LD imaging in their native state and in unaltered cellular environments appears essential to overcome these possible technical pitfalls. Here, imaging techniques for ultrastructural study of native LDs in cellulo are provided and it is shown that LDs are organized structures. Cryo soft X-ray tomography and deep-ultraviolet (DUV) transmittance imaging are showing a partitioning of SEs at the periphery of the LD core. Furthermore, DUV transmittance and tryptophan/tyrosine auto-fluorescence imaging on living cells are combined to obtain complementary information on cell chemical contents. This multimodal approach paves the way for a new label-free organelle imaging technique in living cells.


Assuntos
Gotículas Lipídicas/química , Gotículas Lipídicas/ultraestrutura , Imagem Multimodal , Microscopia Crioeletrônica , Saccharomyces cerevisiae , Síncrotrons , Triglicerídeos/química
4.
Sci Rep ; 10(1): 6881, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327691

RESUMO

Triphenylamines (TPAs) were previously shown to trigger cell death under prolonged one- or two-photon illumination. Their initial subcellular localization, before prolonged illumination, is exclusively cytoplasmic and they translocate to the nucleus upon photoactivation. However, depending on their structure, they display significant differences in terms of precise initial localization and subsequent photoinduced cell death mechanism. Here, we investigated the structural features of TPAs that influence cell death by studying a series of molecules differing by the number and chemical nature of vinyl branches. All compounds triggered cell death upon one-photon excitation, however to different extents, the nature of the electron acceptor group being determinant for the overall cell death efficiency. Photobleaching susceptibility was also an important parameter for discriminating efficient/inefficient compounds in two-photon experiments. Furthermore, the number of branches, but not their chemical nature, was crucial for determining the cellular uptake mechanism of TPAs and their intracellular fate. The uptake of all TPAs is an active endocytic process but two- and three-branch compounds are taken up via distinct endocytosis pathways, clathrin-dependent or -independent (predominantly caveolae-dependent), respectively. Two-branch TPAs preferentially target mitochondria and photoinduce both apoptosis and a proper necrotic process, whereas three-branch TPAs preferentially target late endosomes and photoinduce apoptosis only.


Assuntos
Aminas/toxicidade , Endocitose/efeitos dos fármacos , Endocitose/efeitos da radiação , Espaço Intracelular/metabolismo , Luz , Aminas/química , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/efeitos da radiação , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Fluorescência
5.
Sci Rep ; 10(1): 2668, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060324

RESUMO

Current research findings clearly reveal the role of the microalga's cell wall as a key obstacle to an efficient and optimal compound extraction. Such extraction process is therefore closely related to the microalga species used. Effects of electrical or mechanical constraints on C. reinhardtii's structure and particularly its cell wall and membrane, is therefore investigated in this paper using a combination of microscopic tools. Membrane pores with a radius between 0.77 and 1.59 nm were determined for both reversible (5 kV∙cm-1) and irreversible (7 kV∙cm-1) electroporation with a 5 µs pulse duration. Irreversible electroporation with longer pulses (10 µs) lead to the entry of large molecules (at least 5.11 nm). Additionally, for the first time, the effect of pulsed electric fields on the cell wall was observed. The combined electrical and mechanical treatment showed a significant impact on the cell wall structure as observed under Transmission Electron Microscopy. This treatment permits the penetration of larger molecules (at least 5.11 nm) within the cell, shown by tracking the penetration of dextran molecules. For the first time, the size of pores on the cell membrane and the structural changes on the microalgae cell wall induced by electrical and mechanical treatments is reported.


Assuntos
Permeabilidade da Membrana Celular/efeitos da radiação , Chlamydomonas reinhardtii/ultraestrutura , Radiação Eletromagnética , Estresse Mecânico , Membrana Celular/efeitos da radiação , Membrana Celular/ultraestrutura , Chlamydomonas reinhardtii/efeitos da radiação , Eletroporação , Fenômenos Físicos
6.
Methods Mol Biol ; 2040: 117-133, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31432478

RESUMO

Confocal laser scanning microscopy (CLSM) is one of the most relevant technologies for studying biofilms in situ. Several tools have been developed to investigate and quantify the architecture of biofilms. However, an approach to accurately quantify the intensity of a fluorescent signal over biofilm depth is still lacking. Here we present a tool developed in the ImageJ open-source software that can be used to extract both structure and fluorescence intensity from CLSM data: BIAM (Biofilm Intensity and Architecture Measurement). This is of utmost significance when studying the fundamental mechanisms of biofilm development, differentiation, and in situ gene expression or when aiming to understand the effect of external molecules on biofilm phenotypes.


Assuntos
Biofilmes , Processamento de Imagem Assistida por Computador/métodos , Conjuntos de Dados como Assunto , Fluorescência , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Software
7.
Biochim Biophys Acta Gen Subj ; 1863(6): 1127-1137, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30986510

RESUMO

BACKGROUND: Nitric-oxide synthases (NOS) catalyze the formation of NO using NADPH as electron donor. We have recently designed and synthesized a new series of two-photon absorbing and photoactivatable NADPH analogues (NT). These compounds bear one or two carboxymethyl group(s) on the 2'- or/and 3'-position(s) of the ribose in the adenosine moiety, instead of a 2'-phosphate group, and differ by the nature of the electron donor in their photoactivatable chromophore (replacing the nicotinamide moiety). Here, we addressed the ability of NTs to photoinduce eNOS-dependent NO production in endothelial cells. METHODS: The cellular fate of NTs and their photoinduced effects were studied using multiphoton fluorescence imaging, cell viability assays and a BODIPY-derived NO probe for NO measurements. The eNOS dependence of photoinduced NO production was addressed using two NOS inhibitors (NS1 and L-NAME) targeting the reductase and the oxygenase domains, respectively. RESULTS: We found that, two compounds, those bearing a single carboxymethyl group on the 3'-position of the ribose, colocalize with the Golgi apparatus (the main intracellular location of eNOS) and display high intracellular two-photon brightness. Furthermore, a eNOS-dependent photooxidation was observed for these two compounds only, which is accompanied by a substantial intracellular NO production accounting for specific photocytotoxic effects. CONCLUSIONS: We show for the first time that NT photoactivation efficiently triggers electron flow at the eNOS level and increases the basal production of NO by endothelial cells. GENERAL SIGNIFICANCE: Efficient photoactivatable NADPH analogues targeting NOS could have important implications for generating apoptosis in tumor cells or modulating NO-dependent physiological processes.


Assuntos
Complexo de Golgi/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Luz , NADP , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Humanos , NADP/análogos & derivados , NADP/farmacologia
8.
Nat Protoc ; 13(6): 1348-1361, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29773906

RESUMO

The efficacy of antibacterial molecules depends on their capacity to reach inhibitory concentrations in the vicinity of their target. This is particularly challenging for drugs directed against Gram-negative bacteria, which have a complex envelope comprising two membranes and efflux pumps. Precise determination of the bacterial drug content is an essential prerequisite for drug development. Here we describe three approaches that have been developed in our laboratories to quantify drugs accumulated in intact cells by spectrofluorimetry, microspectrofluorimetry, and kinetics microspectrofluorimetry (KMSF). These different procedures provide complementary results that highlight the contribution of membrane-associated mechanisms, including influx through the outer membrane (OM) and efflux, and the importance of the physicochemical properties of the transported drugs for the intracellular concentration of a given antibiotic in a given bacterial population. The three key stages of this protocol are preparation of the bacterial strains in the presence of the antibiotic; preparation of the whole-cell lysates (WCLs) and fluorescence readings; and data analysis, including normalization and quantitation of the intracellular antibiotic fluorescence relative to the internal standard and the antibiotic standard curve, respectively. Fluorimetry is limited to naturally fluorescent or labeled compounds, but in contrast to existing alternative methods such as mass spectrometry, it uniquely allows single-cell analysis. From culture growth to data analysis, the protocol described here takes 5 d.


Assuntos
Antibacterianos/análise , Bactérias/química , Espectrometria de Fluorescência/métodos , Antibacterianos/farmacocinética , Membranas/metabolismo , Análise de Célula Única/métodos
9.
Sci Rep ; 7(1): 9821, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851902

RESUMO

Bacterial multidrug resistance is a worrying health issue. In Gram-negative antibacterial research, the challenge is to define the antibiotic permeation across the membranes. Passing through the membrane barrier to reach the inhibitory concentration inside the bacterium is a pivotal step for antibacterial molecules. A spectrofluorimetric methodology has been developed to detect fluoroquinolones in bacterial population and inside individual Gram-negative bacterial cells. In this work, we studied the antibiotic accumulation in cells expressing various levels of efflux pumps. The assays allow us to determine the intracellular concentration of the fluoroquinolones to study the relationships between the level of efflux activity and the antibiotic accumulation, and finally to evaluate the impact of fluoroquinolone structures in this process. This represents the first protocol to identify some structural parameters involved in antibiotic translocation and accumulation, and to illustrate the recently proposed "Structure Intracellular Concentration Activity Relationship" (SICAR) concept.


Assuntos
Antibacterianos/metabolismo , Bactérias/metabolismo , Membrana Celular/metabolismo , Fluoroquinolonas/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Fluoroquinolonas/química , Fluoroquinolonas/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular
10.
J Microbiol Methods ; 140: 47-57, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28679111

RESUMO

Confocal laser scanning microscopy (CLSM) is one of the most relevant technologies for studying biofilms in situ. Several tools have been developed to investigate and quantify the architecture of biofilms. However, an approach to quantify correctly the evolution of intensity of a fluorescent signal as a function of the structural parameters of a biofilm is still lacking. Here we present a tool developed in the ImageJ open source software that can be used to extract both structural and fluorescence intensity from CLSM data: BIAM (Biofilm Intensity and Architecture Measurement). This is of utmost significance when studying the fundamental mechanisms of biofilm growth, differentiation and development or when aiming to understand the effect of external molecules on biofilm phenotypes. In order to provide an example of the potential of such a tool in this study we focused on biofilm dispersion. cis-2-Decenoic acid (CDA) is a molecule known to induce biofilm dispersion of multiple bacterial species. The mechanisms by which CDA induces dispersion are still poorly understood. To investigate the effects of CDA on biofilms, we used a reporter strain of Escherichia coli (E. coli) that expresses the GFPmut2 protein under control of the rrnBP1 promoter. Experiments were done in flow cells and image acquisition was made with CLSM. Analysis carried out using the new tool, BIAM, indicates that CDA affects the fluorescence intensity of the biofilm structures as well as biofilm architectures. Indeed, our results demonstrate that CDA removes more than 35% of biofilm biovolume and suggest that it results in an increase of the biofilm's mean fluorescence intensity (MFI) by more than 26% compared to the control biofilm in the absence of CDA.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli/fisiologia , Microscopia Confocal/métodos , Software , Técnicas Bacteriológicas/instrumentação , Técnicas Bacteriológicas/métodos , Biofilmes/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Ácidos Graxos Monoinsaturados/farmacologia , Fluorescência , Regiões Promotoras Genéticas
11.
Sci Rep ; 7(1): 986, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28428543

RESUMO

A main challenge in chemotherapy is to determine the in cellulo parameters modulating the drug concentration required for therapeutic action. It is absolutely urgent to understand membrane permeation and intracellular concentration of antibiotics in clinical isolates: passing the membrane barrier to reach the threshold concentration inside the bacterial periplasm or cytoplasm is the pivotal step of antibacterial activity. Ceftazidime (CAZ) is a key molecule of the combination therapy for treating resistant bacteria. We designed and synthesized different fluorescent CAZ derivatives (CAZ*, CAZ**) to dissect the early step of translocation-accumulation across bacterial membrane. Their activities were determined on E. coli strains and on selected clinical isolates overexpressing ß-lactamases. The accumulation of CAZ* and CAZ** were determined by microspectrofluorimetry and epifluorimetry. The derivatives were properly translocated to the periplasmic space when we permeabilize the outer membrane barrier. The periplasmic location of CAZ** was related to a significant antibacterial activity and with the outer membrane permeability. This study demonstrated the correlation between periplasmic accumulation and antibiotic activity. We also validated the method for approaching ß-lactam permeation relative to membrane permeability and paved the way for an original matrix for determining "Structure Intracellular Accumulation Activity Relationship" for the development of new therapeutic candidates.


Assuntos
Antibacterianos/farmacocinética , Ceftazidima/farmacocinética , Bactérias Gram-Negativas/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Ceftazidima/síntese química , Ceftazidima/química , Membrana Celular/química , Testes de Sensibilidade Microbiana , Microespectrofotometria , Estrutura Molecular , Periplasma/química , Permeabilidade
12.
Elife ; 62017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28394250

RESUMO

Dietary restriction increases the longevity of many organisms, but the cell signaling and organellar mechanisms underlying this capability are unclear. We demonstrate that to permit long-term survival in response to sudden glucose depletion, yeast cells activate lipid-droplet (LD) consumption through micro-lipophagy (µ-lipophagy), in which fat is metabolized as an alternative energy source. AMP-activated protein kinase (AMPK) activation triggered this pathway, which required Atg14p. More gradual glucose starvation, amino acid deprivation or rapamycin did not trigger µ-lipophagy and failed to provide the needed substitute energy source for long-term survival. During acute glucose restriction, activated AMPK was stabilized from degradation and interacted with Atg14p. This prompted Atg14p redistribution from ER exit sites onto liquid-ordered vacuole membrane domains, initiating µ-lipophagy. Our findings that activated AMPK and Atg14p are required to orchestrate µ-lipophagy for energy production in starved cells is relevant for studies on aging and evolutionary survival strategies of different organisms.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Metabolismo Energético , Glucose/metabolismo , Metabolismo dos Lipídeos , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Quinases Proteína-Quinases Ativadas por AMP , Viabilidade Microbiana , Saccharomyces cerevisiae/metabolismo
13.
J Cell Sci ; 129(18): 3511-7, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27505892

RESUMO

Sickle cell disease is a destructive genetic disorder characterized by the formation of fibrils of deoxygenated hemoglobin, leading to the red blood cell (RBC) morphology changes that underlie the clinical manifestations of this disease. Using cryogenic soft X-ray tomography (SXT), we characterized the morphology of sickled RBCs in terms of volume and the number of protrusions per cell. We were able to identify statistically a relationship between the number of protrusions and the volume of the cell, which is known to correlate to the severity of sickling. This structural polymorphism allows for the classification of the stages of the sickling process. Recent studies have shown that elevated sphingosine kinase 1 (Sphk1)-mediated sphingosine 1-phosphate production contributes to sickling. Here, we further demonstrate that compound 5C, an inhibitor of Sphk1, has anti-sickling properties. Additionally, the variation in cellular morphology upon treatment suggests that this drug acts to delay the sickling process. SXT is an effective tool that can be used to identify the morphology of the sickling process and assess the effectiveness of potential therapeutics.


Assuntos
Anemia Falciforme/enzimologia , Eritrócitos/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Tomografia por Raios X/métodos , Animais , Extensões da Superfície Celular/efeitos dos fármacos , Extensões da Superfície Celular/metabolismo , Eritrócitos/efeitos dos fármacos , Humanos , Camundongos , Inibidores de Proteínas Quinases/farmacologia
14.
Sci Rep ; 5: 17968, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26656111

RESUMO

Bacterial multidrug resistance is a significant health issue. A key challenge, particularly in Gram-negative antibacterial research, is to better understand membrane permeation of antibiotics in clinically relevant bacterial pathogens. Passing through the membrane barrier to reach the required concentration inside the bacterium is a pivotal step for most antibacterials. Spectrometric methodology has been developed to detect drugs inside bacteria and recent studies have focused on bacterial cell imaging. Ultimately, we seek to use this method to identify pharmacophoric groups which improve penetration, and therefore accumulation, of small-molecule antibiotics inside bacteria. We developed a method to quantify the time scale of antibiotic accumulation in living bacterial cells. Tunable ultraviolet excitation provided by DISCO beamline (synchrotron Soleil) combined with microscopy allows spectroscopic analysis of the antibiotic signal in individual bacterial cells. Robust controls and measurement of the crosstalk between fluorescence channels can provide real time quantification of drug. This technique represents a new method to assay drug translocation inside the cell and therefore incorporate rational drug design to impact antibiotic uptake.


Assuntos
Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Microespectrofotometria , Análise de Célula Única/métodos , Antibacterianos/química , Bactérias/genética , Farmacorresistência Bacteriana , Estrutura Molecular , Oxirredução , Espécies Reativas de Oxigênio
15.
Stem Cell Reports ; 5(5): 728-740, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26489895

RESUMO

Epigenetic regulation serves as the basis for stem cell differentiation into distinct cell types, but it is unclear how global epigenetic changes are regulated during this process. Here, we tested the hypothesis that global chromatin organization affects the lineage potential of stem cells and that manipulation of chromatin dynamics influences stem cell function. Using nuclease sensitivity assays, we found a progressive decrease in chromatin digestion among pluripotent embryonic stem cells (ESCs), multipotent hematopoietic stem cells (HSCs), and mature hematopoietic cells. Quantitative high-resolution microscopy revealed that ESCs contain significantly more euchromatin than HSCs, with a further reduction in mature cells. Increased cellular maturation also led to heterochromatin localization to the nuclear periphery. Functionally, prevention of heterochromatin formation by inhibition of the histone methyltransferase G9A resulted in delayed HSC differentiation. Our results demonstrate global chromatin rearrangements during stem cell differentiation and that heterochromatin formation by H3K9 methylation regulates HSC differentiation.


Assuntos
Diferenciação Celular , Montagem e Desmontagem da Cromatina , Células-Tronco Embrionárias/citologia , Células-Tronco Hematopoéticas/citologia , Histonas/metabolismo , Animais , Células-Tronco Embrionárias/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Metilação , Camundongos , Camundongos Endogâmicos C57BL
16.
Curr Biol ; 24(23): 2861-7, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25454593

RESUMO

Abnormal nuclear size and shape are hallmarks of aging and cancer. However, the mechanisms regulating nuclear morphology and nuclear envelope (NE) expansion are poorly understood. In metazoans, the NE disassembles prior to chromosome segregation and reassembles at the end of mitosis. In budding yeast, the NE remains intact. The nucleus elongates as chromosomes segregate and then divides at the end of mitosis to form two daughter nuclei without NE disassembly. The budding yeast nucleus also undergoes remodeling during a mitotic arrest; the NE continues to expand despite the pause in chromosome segregation, forming a nuclear extension, or "flare," that encompasses the nucleolus. The distinct nucleolar localization of the mitotic flare indicates that the NE is compartmentalized and that there is a mechanism by which NE expansion is confined to the region adjacent to the nucleolus. Here we show that mitotic flare formation is dependent on the yeast polo kinase Cdc5. This function of Cdc5 is independent of its known mitotic roles, including rDNA condensation. High-resolution imaging revealed that following Cdc5 inactivation, nuclei expand isometrically rather than forming a flare, indicating that Cdc5 is needed for NE compartmentalization. Even in an uninterrupted cell cycle, a small NE expansion occurs adjacent to the nucleolus prior to anaphase in a Cdc5-dependent manner. Our data provide the first evidence that polo kinase, a key regulator of mitosis, plays a role in regulating nuclear morphology and NE expansion.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Proteínas de Ciclo Celular/genética , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Segregação de Cromossomos , DNA Ribossômico/metabolismo , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/metabolismo
17.
Proc Natl Acad Sci U S A ; 111(48): 17164-9, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25404337

RESUMO

Total internal reflection fluorescence microscopy (TIRFM) is the method of choice to visualize a variety of cellular processes in particular events localized near the plasma membrane of live adherent cells. This imaging technique not relying on particular fluorescent probes provides a high sectioning capability. It is, however, restricted to a single plane. We present here a method based on a versatile design enabling fast multiwavelength azimuthal averaging and incidence angles scanning to computationally reconstruct 3D images sequences. We achieve unprecedented 50-nm axial resolution over a range of 800 nm above the coverslip. We apply this imaging modality to obtain structural and dynamical information about 3D actin architectures. We also temporally decipher distinct Rab11a-dependent exocytosis events in 3D at a rate of seven stacks per second.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Modelos Teóricos , Actinas/química , Actinas/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Exocitose , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/metabolismo , Polimerização , Reprodutibilidade dos Testes , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteína Vermelha Fluorescente
18.
J Synchrotron Radiat ; 21(Pt 6): 1370-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25343808

RESUMO

Beamline 2.1 (XM-2) is a transmission soft X-ray microscope in sector 2 of the Advanced Light Source at Lawrence Berkeley National Laboratory. XM-2 was designed, built and is now operated by the National Center for X-ray Tomography as a National Institutes of Health Biomedical Technology Research Resource. XM-2 is equipped with a cryogenic rotation stage to enable tomographic data collection from cryo-preserved cells, including large mammalian cells. During data collection the specimen is illuminated with `water window' X-rays (284-543 eV). Illuminating photons are attenuated an order of magnitude more strongly by biomolecules than by water. Consequently, differences in molecular composition generate quantitative contrast in images of the specimen. Soft X-ray tomography is an information-rich three-dimensional imaging method that can be applied either as a standalone technique or as a component modality in correlative imaging studies.


Assuntos
Criopreservação , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Animais , Biologia Celular/instrumentação , Células Cultivadas , Criopreservação/instrumentação , Criopreservação/métodos , Desenho de Equipamento , Luz , Manejo de Espécimes , Tomografia Computadorizada por Raios X/métodos
19.
J Cell Biochem ; 115(2): 209-16, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23966233

RESUMO

Each class of microscope is limited to imaging specific aspects of cell structure and/or molecular organization. However, imaging the specimen by complementary microscopes and correlating the data can overcome this limitation. Whilst not a new approach, the field of correlative imaging is currently benefitting from the emergence of new microscope techniques. Here we describe the correlation of cryogenic fluorescence tomography (CFT) with soft X-ray tomography (SXT). This amalgamation of techniques integrates 3D molecular localization data (CFT) with a high-resolution, 3D cell reconstruction of the cell (SXT). Cells are imaged in both modalities in a near-native, cryopreserved state. Here we describe the current state of the art in correlative CFT-SXT, and discuss the future outlook for this method.


Assuntos
Imageamento Tridimensional , Microscopia de Fluorescência/métodos , Tomografia por Raios X/métodos , Leveduras/ultraestrutura , Humanos , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência/tendências , Estatística como Assunto , Tomografia por Raios X/tendências
20.
Ultramicroscopy ; 143: 33-40, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24355261

RESUMO

Correlated imaging is the process of imaging a specimen with two complementary modalities, and then combining the two data sets to create a highly informative, composite view. A recent implementation of this concept has been the combination of soft x-ray tomography (SXT) with fluorescence cryogenic microscopy (FCM). SXT-FCM is used to visualize cells that are held in a near-native, cryopreserved. The resultant images are, therefore, highly representative of both the cellular architecture and molecular organization in vivo. SXT quantitatively visualizes the cell and sub-cellular structures; FCM images the spatial distribution of fluorescently labeled molecules. Here, we review the characteristics of SXT-FCM, and briefly discuss how this method compares with existing correlative imaging techniques. We also describe how the incorporation of a cryo-rotation stage into a cryogenic fluorescence microscope allows acquisition of fluorescence cryogenic tomography (FCT) data. FCT is optimally suited for correlation with SXT, since both techniques image the specimen in 3-D, potentially with similar, isotropic spatial resolution.


Assuntos
Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Tomografia Computadorizada por Raios X/métodos , Microscopia Crioeletrônica/métodos , Imageamento Tridimensional/métodos , Luz , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...