Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077300

RESUMO

Over the past few decades, finding more efficient and selective administration routes has gained significant attention due to its crucial role in the bioavailability, absorption rate and pharmacokinetics of therapeutic substances. The pulmonary delivery of drugs has become an attractive target of scientific and biomedical interest in the health care research area, as the lung, thanks to its high permeability and large absorptive surface area and good blood supply, is capable of absorbing pharmaceuticals either for local deposition or for systemic delivery. Nevertheless, the pulmonary drug delivery is relatively complex, and strategies to mitigate the effects of mechanical, chemical and immunological barriers are required. Herein, engineered erythrocytes, the Erythro-Magneto-Hemagglutinin (HA)-virosomes (EMHVs), are used as a novel strategy for efficiently delivering drugs to the lungs. EMHV bio-based carriers exploit the physical properties of magnetic nanoparticles to achieve effective targeting after their intravenous injection thanks to an external magnetic field. In addition, the presence of hemagglutinin fusion proteins on EMHVs' membrane allows the DDS to anchor and fuse with the target tissue and locally release the therapeutic compound. Our results on the biomechanical and biophysical properties of EMHVs, such as the membrane robustness and deformability and the high magnetic susceptibility, as well as their in vivo biodistribution, highlight that this bio-inspired DDS is a promising platform for the controlled and lung-targeting delivery of drugs, and represents a valuable alternative to inhalation therapy to fulfill unmet clinical needs.


Assuntos
Nanopartículas , Virossomos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Hemaglutininas/metabolismo , Pulmão/metabolismo , Nanopartículas/química , Preparações Farmacêuticas/metabolismo , Distribuição Tecidual , Virossomos/metabolismo
2.
J Cardiovasc Transl Res ; 15(2): 391-407, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34409583

RESUMO

Cardiac hypertrophy, in its aspects of localized thickening of the interventricular septum and concentric increase of the left ventricle, constitutes a risk factor of heart failure. Myocardial hypertrophy, in the presence of different degree of myocardial fibrosis, is paralleled by significant molecular, cellular, and histological changes inducing alteration of cardiac extracellular matrix composition as well as sarcomeres and cytoskeleton remodeling. Previous studies indicate osteopontin (OPN) and more recently survivin (SURV) overexpression as the hallmarks of heart failure although SURV function in the heart is not completely clarified. In this study, we investigated the involvement of SURV in intracellular signaling of hypertrophic cardiomyocytes and the impact of its transcriptional silencing, laying the foundation for novel target gene therapy in cardiac hypertrophy. Oligonucleotide-based molecules, like theranostic optical nanosensors (molecular beacons) and siRNAs, targeting SURV and OPN mRNAs, were developed. Their diagnostic and therapeutic potential was evaluated in vitro in hypertrophic FGF23-induced human cardiomyocytes and in vivo in transverse aortic constriction hypertrophic mouse model. Engineered erythrocyte was used as shuttle to selectively target and transfer siRNA molecules into unhealthy cardiac cells in vivo. The results highlight how the SURV knockdown could negatively influence the expression of genes involved in myocardial fibrosis in vitro and restores structural, functional, and morphometric features in vivo. Together, these data suggested that SURV is a key factor in inducing cardiomyocytes hypertrophy, and its shutdown is crucial in slowing disease progression as well as reversing cardiac hypertrophy. In the perspective, targeted delivery of siRNAs through engineered erythrocytes can represent a promising therapeutic strategy to treat cardiac hypertrophy. Theranostic SURV molecular beacon (MB-SURV), transfected into FGF23-induced hypertrophic human cardiomyocytes, significantly dampened SURV overexpression. SURV down-regulation determines the tuning down of MMP9, TIMP1 and TIMP4 extracellular matrix remodeling factors while induces the overexpression of the cardioprotective MCAD factor, which counterbalance the absence of pro-survival and anti-apoptotic SURV activity to protect cardiomyocytes from death. In transverse aortic constriction (TAC) mouse model, the SURV silencing restores the LV mass levels to values not different from the sham group and counteracts the progressive decline of EF, maintaining its values always higher with respect to TAC group. These data demonstrate the central role of SURV in the cardiac reverse remodeling and its therapeutic potential to reverse cardiac hypertrophy.


Assuntos
Cardiomegalia , Insuficiência Cardíaca , Animais , Cardiomegalia/genética , Cardiomegalia/terapia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Survivina/genética , Survivina/metabolismo , Survivina/uso terapêutico , Remodelação Ventricular
3.
Biomed Phys Eng Express ; 6(4): 045005, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33444266

RESUMO

Gliomas are the most common intracranial tumors, featured by a high mortality rate. They represent about 28% of all primary central nervous system (CNS) tumors and 80% of all malignant brain tumors. Cytotoxic chemotherapy is one of the conventional treatments used for the treatment, but it often shows rather limited efficacy and severe side effects on healthy organs, due to the low selectivity of the therapy for malignant cells and to a limited access of the drug to the tumor site, caused by the presence of the Blood-Brain Barrier. In order to resolve these limitations, recently an Erythro-Magneto-HA-Virosome (EMHV) drug delivery system (DDS), remotely controllable through an externally applied magnetic field, has been proposed. To accurately localize the EMHV at the target area, a system able to generate an adequate magnetic field is necessary. In this framework, the objective of this paper was to design and develop a magnetic helmet for the localization of the proposed EMHV DDS in the brain area. The results demonstrated, through the implementation of therapeutic efficacy maps, that the magnetic helmet designed in the study is a potential promising magnetic generation system useful for studying the possible usability of the magnetic helmet in the treatment of glioma and possibly other CNS pathologies by EMHV DDS.


Assuntos
Neoplasias Encefálicas/terapia , Glioma/terapia , Virossomos/uso terapêutico , Antineoplásicos/administração & dosagem , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Sistemas de Liberação de Medicamentos/métodos , Desenho de Equipamento , Hemaglutininas/química , Humanos , Campos Magnéticos , Magnetismo , Fusão de Membrana
4.
PLoS One ; 13(11): e0206686, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30485296

RESUMO

BACKGROUND: In melanoma, like in other cancers, both genetic alterations and epigenetic underlie the metastatic process. These effects are usually measured by changes in both methylome and transcriptome profiles, whose cross-correlation remains uncertain. We aimed to assess at systems scale the significance of epigenetic treatment in melanoma cells with different metastatic potential. METHODS AND FINDINGS: Treatment by DAC demethylation with 5-Aza-2'-deoxycytidine of two melanoma cell lines endowed with different metastatic potential, SKMEL-2 and HS294T, was performed and high-throughput coupled RNA-Seq and RRBS-Seq experiments delivered differential profiles (DiP) of both transcriptomes and methylomes. Methylation levels measured at both TSS and gene body were studied to inspect correlated patterns with wide-spectrum transcript abundance levels quantified in both protein coding and non-coding RNA (ncRNA) regions. The DiP were then mapped onto standard bio-annotation sources (pathways, biological processes) and network configurations were obtained. The prioritized associations for target identification purposes were expected to elucidate the reprogramming dynamics induced by the epigenetic therapy. The interactomic connectivity maps of each cell line were formed to support the analysis of epigenetically re-activated genes. i.e. those supposedly silenced by melanoma. In particular, modular protein interaction networks (PIN) were used, evidencing a limited number of shared annotations, with an example being MAPK13 (cascade of cellular responses evoked by extracellular stimuli). This gene is also a target associated to the PANDAR ncRNA, therapeutically relevant because of its aberrant expression observed in various cancers. Overall, the non-metastatic SKMEL-2 map reveals post-treatment re-activation of a richer pathway landscape, involving cadherins and integrins as signatures of cell adhesion and proliferation. Relatively more lncRNAs were also annotated, indicating more complex regulation patterns in view of target identification. Finally, the antigen maps matched to DiP display other differential signatures with respect to the metastatic potential of the cell lines. In particular, as demethylated melanomas show connected targets that grow with the increased metastatic potential, also the potential target actionability seems to depend to some degree on the metastatic state. However, caution is required when assessing the direct influence of re-activated genes over the identified targets. In light of the stronger treatment effects observed in non-metastatic conditions, some limitations likely refer to in silico data integration tools and resources available for the analysis of tumor antigens. CONCLUSION: Demethylation treatment strongly affects early melanoma progression by re-activating many genes. This evidence suggests that the efficacy of this type of therapeutic intervention is potentially high at the pre-metastatic stages. The biomarkers that can be assessed through antigens seem informative depending on the metastatic conditions, and networks help to elucidate the assessment of possible targets actionability.


Assuntos
Antígenos/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Metilação de DNA/efeitos dos fármacos , Decitabina/farmacologia , Melanoma/tratamento farmacológico , Transcriptoma/efeitos dos fármacos , Linhagem Celular Tumoral , Progressão da Doença , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Metástase Linfática/fisiopatologia , Melanoma/genética , Melanoma/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , RNA Longo não Codificante/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo
5.
J Control Release ; 280: 76-86, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29733876

RESUMO

Colorectal cancer (CRC) is one of the major causes of cancer-associated mortality worldwide. The currently approved therapeutic agents show a rather limited efficacy. We have recently demonstrated that the atypical cadherin FAT1 is a specific marker of CRC and that the FAT1-specific monoclonal antibody mAb198.3 may offer new therapeutic opportunities for CRC, being efficiently internalized by cancer cells and reducing cancer growth in colon cancer xenograft models. In this study we explored the therapeutic efficacy of mAb198.3 using two drug delivery systems (DDS) for improving the targeted treatment of CRC. The mAb198.3 was either directly bound to super-paramagnetic nanoparticles (spmNPs) or embedded into human erythrocyte-based magnetized carriers, named Erythro-Magneto-Hemagglutinin Virosomes (EMHVs) to produce two different novel mAb198.3 formulations. Both DDS were endowed with magnetic properties and were anchored in the target tumor site by means of an external permanent magnet. The antibody loading efficiency of these two magnetically driven drug delivery systems and the overall therapeutic efficacy of these two formulations were assessed both in vitro and in a proof-of-concept in vivo study. We demonstrated that mAb198.3 bound to spmNPs or embedded into EMHVs was very effective in targeting FAT1-positive colon cancer cells in vitro and accumulating in the tumor mass in vivo. Although both in vivo administered mAb198.3 formulations have approximately 200 lower antibody doses needed, these showed to achieve a relevant therapeutic effect, thus reducing cancer growth more efficiently respect to the naked antibody. These results indicate that the two proposed magnetically driven drug delivery systems have a considerable potential as platforms to improve bioavailability and pharmacodynamics of anti-FAT mAb198.3 and raise new opportunities for a targeted therapy of CRC.


Assuntos
Anticorpos Monoclonais/química , Caderinas/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas de Magnetita/química , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Composição de Medicamentos/métodos , Eritrócitos/química , Humanos , Imunoterapia/métodos , Magnetismo/métodos , Camundongos Nus , Terapia de Alvo Molecular/métodos , Tamanho da Partícula , Propriedades de Superfície , Distribuição Tecidual
6.
Front Immunol ; 8: 918, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824643

RESUMO

This study highlights the relevance of network-guided controllability analysis as a precision oncology tool. Target controllability through networks is potentially relevant to cancer research for the identification of therapeutic targets. With reference to a recent study on multiple phenotypes from 22 osteosarcoma (OS) cell lines characterized both in vitro and in vivo, we found that a variety of critical proteins in OS regulation circuits were in part phenotype specific and in part shared. To generalize our inference approach and match cancer phenotypic heterogeneity, we employed multitype networks and identified targets in correspondence with protein sub-complexes. Therefore, we established the relevance for diagnostic and therapeutic purposes of inspecting interactive targets, namely those enriched by significant connectivity patterns in protein sub-complexes. Emerging targets appeared with reference to the OS microenvironment, and relatively to small leucine-rich proteoglycan members and D-type cyclins, among other collagen, laminin, and keratin proteins. These described were evidences shared across all phenotypes; instead, specific evidences were provided by critical proteins including IGFBP7 and PDGFRA in the invasive phenotype, and FGFR3 and THBS1 in the colony forming phenotype.

7.
Br J Cancer ; 115(1): 40-51, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27328312

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the major causes of cancer-associated mortality worldwide. The currently approved therapeutic agents have limited efficacy. METHODS: The atypical cadherin FAT1 was discovered as a novel CRC-associated protein by using a monoclonal antibody (mAb198.3). FAT1 expression was assessed in CRC cells by immunohistochemistry (IHC), immunoblots, flow cytometry and confocal microscopy. In addition, in vitro and in vivo tumour models were done to assess FAT1 potential value for therapeutic applications. RESULTS: The study shows that FAT1 is broadly expressed in primary and metastatic CRC stages and detected by mAb198.3, regardless of KRAS and BRAF mutations. FAT1 mainly accumulates at the plasma membrane of cancer cells, whereas it is only marginally detected in normal human samples. Moreover, the study shows that FAT1 has an important role in cell invasiveness while it does not significantly influence apoptosis. mAb198.3 specifically recognises FAT1 on the surface of colon cancer cells and is efficiently internalised. Furthermore, it reduces cancer growth in a colon cancer xenograft model. CONCLUSIONS: This study provides evidence that FAT1 and mAb198.3 may offer new therapeutic opportunities for CRC including the tumours resistant to current EGFR-targeted therapies.


Assuntos
Anticorpos Monoclonais/farmacologia , Caderinas/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Células HT29 , Humanos , Mutação/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas ras/metabolismo
8.
Cancer Inform ; 15: 45-64, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27147816

RESUMO

Pan-cancer studies are particularly relevant not only for addressing the complexity of the inherently observed heterogeneity but also for identifying clinically relevant features that may be common to the cancer types. Immune system regulations usually reveal synergistic modulation with other cancer mechanisms and in combination provide insights on possible advances in cancer immunotherapies. Network inference is a powerful approach to decipher pan-cancer systems dynamics. The methodology proposed in this study elucidates the impacts of epigenetic treatment on the drivers of complex pan-cancer regulation circuits involving cell lines of five cancer types. These patterns were observed from differential gene expression measurements following demethylation with 5-azacytidine. Networks were built to establish associations of phenotypes at molecular level with cancer hallmarks through both transcriptional and post-transcriptional regulation mechanisms. The most prominent feature that emerges from our integrative network maps, linking pathway landscapes to disease and drug-target associations, refers primarily to a mosaic of immune-system crosslinked influences. Therefore, characteristics initially evidenced in single cancer maps become motifs well summarized by network cores and fingerprints.

9.
Curr Pharm Biotechnol ; 17(10): 856-65, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27229488

RESUMO

Recent pan-cancer studies have shown the importance of coupling DNA methylation patterns with transcriptome profiles to reveal tumor subgroups with clinically relevant distinct characteristics. While the coupling patterns remain in most cases matter for further study and/or interpretation, it is emerging that all associations between epigenetic changes and specific cancer histotypes can facilitate the development of novel epidrugs. In particular, together with chemotherapy and chemoprevention of cancer, these epidrugs will target specific enzymes involved in the complex regulation of gene expression. This perspective surveys recent cancer epigenetic findings on target drugs and therapeutic strategies, and focuses on the epigenetic modifications that can reverse a stable differentiated state of adult cell towards neoplastic phenotypes. The relevance of such developments may thus pave the way for patient's customized personalized therapies.


Assuntos
Antineoplásicos/farmacologia , Metilação de DNA/fisiologia , Epigênese Genética/fisiologia , Neoplasias/tratamento farmacológico , Medicina de Precisão/métodos , Quimioprevenção , Humanos , Neoplasias/prevenção & controle
10.
Contrast Media Mol Imaging ; 11(6): 561-571, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-28052582

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) have received increasing interest as contrast media in biomedical imaging and innovative therapeutic tools, in particular for loco-regional ablative treatments and drug delivery. The future of therapeutic applications would strongly benefit from improving the capability of the nanostructured constructs to reach the selected target, in particular beyond the intravascular space. Besides the decoration of SPIONs surface with ad hoc bioactive molecules, external magnetic fields are in principle able to remotely influence SPIONs' physiological biodistribution and concentrate them to a specific anatomical region or portion of a tissue. The reduction of SPIONs administered to the body and the need for defining the effective SPIONs local concentration suggest that PET/CT may be a method to quantitatively detect the nanoparticles accumulation in vivo at low concentration and assess their tridimensional distribution in response to an external magnetic field and in relation to the local anatomy highlighted by CT imaging. Here, we report on the possibility to assess the spatial distribution of magnetically-driven radiolabelled SPIONs in a peripheral tissue (mouse thigh) with microPET/CT imaging. To this aim we labelled SPIONs using 18 F-2-fluoro-2-deoxyglucose as a synthon, by chemoselective oxime formation between its open-chain tautomer and nanoparticle amino-groups, and employed microPET/CT imaging to measure the radiolabelled construct biodistribution in a small animal model, following intravenous administration, with and without the application of a permanent magnet onto the skin. The in vivo and ex vivo results showed that micro-PET/CT was able to demonstrate the localizing action of the magnet on SPIONs and provide information, in a multimodal 3D data set, about SPIONs biodistribution taking into account the local anatomy. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Compostos Férricos/farmacocinética , Fluordesoxiglucose F18/análise , Magnetismo , Imagem Multimodal/métodos , Nanopartículas/análise , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Animais , Compostos Férricos/análise , Fluordesoxiglucose F18/farmacocinética , Camundongos , Nanopartículas/química , Compostos Radiofarmacêuticos/análise , Coxa da Perna/diagnóstico por imagem , Distribuição Tecidual
11.
Oncotarget ; 6(27): 23688-707, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26143641

RESUMO

Retinoblastoma, a very aggressive cancer of the developing retina, initiatiates by the biallelic loss of RB1 gene, and progresses very quickly following RB1 inactivation. While its genome is stable, multiple pathways are deregulated, also epigenetically. After reviewing the main findings in relation with recently validated markers, we propose an integrative bioinformatics approach to include in the previous group new markers obtained from the analysis of a single cell line subject to epigenetic treatment. In particular, differentially expressed genes are identified from time course microarray experiments on the WERI-RB1 cell line treated with 5-Aza-2'-deoxycytidine (decitabine; DAC). By inducing demethylation of CpG island in promoter genes that are involved in biological processes, for instance apoptosis, we performed the following main integrative analysis steps: i) Gene expression profiling at 48h, 72h and 96h after DAC treatment; ii) Time differential gene co-expression networks and iii) Context-driven marker association (transcriptional factor regulated protein networks, master regulatory paths). The observed DAC-driven temporal profiles and regulatory connectivity patterns are obtained by the application of computational tools, with support from curated literature. It is worth emphasizing the capacity of networks to reconcile multi-type evidences, thus generating testable hypotheses made available by systems scale predictive inference power. Despite our small experimental setting, we propose through such integrations valuable impacts of epigenetic treatment in terms of gene expression measurements, and then validate evidenced apoptotic effects.


Assuntos
Metilação de DNA/genética , Redes Reguladoras de Genes/genética , Mapas de Interação de Proteínas/genética , Proteína do Retinoblastoma/genética , Retinoblastoma/patologia , Apoptose/genética , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Biologia Computacional , Epigênese Genética , Epigenômica , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Genes do Retinoblastoma , Predisposição Genética para Doença/genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Mapeamento de Interação de Proteínas , Retina/patologia , Retinoblastoma/genética
12.
Theor Biol Med Model ; 11 Suppl 1: S8, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25077705

RESUMO

BACKGROUND: Epigenetic variation is a main regulation mechanism of gene expression in various cancer histotypes, and due to its reversibility, the potential impact in therapy can be very relevant. METHODS: Based on a selected pair, breast cancer (BC) and melanoma, we conducted inference analysis in parallel on a few cell lines (MCF-7 for BC and A375 for melanoma). Starting from differential expression after treatment with a demethylating agent, the 5-Aza-2'-deoxycytidine (DAC), we provided pathway enrichment analysis and gene regulatory maps with cross-linked microRNAs and transcription factors. RESULTS: Several oncogenic signaling pathways altered upon DAC treatment were detected with significant enrichment. We represented the association between these cancers by depicting the landscape of common and specific variation affecting them.


Assuntos
Neoplasias da Mama/genética , Epigênese Genética , Melanoma/genética , Transdução de Sinais/genética , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Decitabina , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Epigênese Genética/efeitos dos fármacos , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Genes Neoplásicos , Humanos , Melanoma/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
13.
PLoS One ; 9(5): e98101, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24851905

RESUMO

Epigenetic events are critical contributors to the pathogenesis of cancer, and targeting epigenetic mechanisms represents a novel strategy in anticancer therapy. Classic demethylating agents, such as 5-Aza-2'-deoxycytidine (Decitabine), hold the potential for reprograming somatic cancer cells demonstrating high therapeutic efficacy in haematological malignancies. On the other hand, epigenetic treatment of solid tumours often gives rise to undesired cytotoxic side effects. Appropriate delivery systems able to enrich Decitabine at the site of action and improve its bioavailability would reduce the incidence of toxicity on healthy tissues. In this work we provide preclinical evidences of a safe, versatile and efficient targeted epigenetic therapy to treat hormone sensitive (LNCap) and hormone refractory (DU145) prostate cancers. A novel Decitabine formulation, based on the use of engineered erythrocyte (Erythro-Magneto-Hemagglutinin Virosomes, EMHVs) drug delivery system (DDS) carrying this drug, has been refined. Inside the EMHVs, the drug was shielded from the environment and phosphorylated in its active form. The novel magnetic EMHV DDS, endowed with fusogenic protein, improved the stability of the carried drug and exhibited a high efficiency in confining its delivery at the site of action in vivo by applying an external static magnetic field. Here we show that Decitabine loaded into EMHVs induces a significant tumour mass reduction in prostate cancer xenograft models at a concentration, which is seven hundred times lower than the therapeutic dose, suggesting an improved pharmacokinetics/pharmacodynamics of drug. These results are relevant for and discussed in light of developing personalised autologous therapies and innovative clinical approach for the treatment of solid tumours.


Assuntos
Epigênese Genética , Neoplasias da Próstata/tratamento farmacológico , Animais , Antimetabólitos Antineoplásicos/uso terapêutico , Azacitidina/análogos & derivados , Azacitidina/uso terapêutico , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Decitabina , Humanos , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias da Próstata/genética
15.
PLoS One ; 9(4): e95596, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24756038

RESUMO

Understanding the molecular mechanisms underlying multi-drug resistance (MDR) is one of the major challenges in current cancer research. A phenomenon which is common to both intrinsic and acquired resistance, is the aberrant alteration of gene expression in drug-resistant cancers. Although such dysregulation depends on many possible causes, an epigenetic characterization is considered a main driver. Recent studies have suggested a direct role for epigenetic inactivation of genes in determining tumor chemo-sensitivity. We investigated the effects of the inhibition of DNA methyltransferase (DNMT) and hystone deacethylase (HDAC), considered to reverse the epigenetic aberrations and lead to the re-expression of de novo methylated genes in MDR osteosarcoma (OS) cells. Based on our analysis of the HosDXR150 cell line, we found that in order to reduce cell proliferation, co-treatment of MDR OS cells with DNMT (5-Aza-dC, DAC) and HDAC (Trichostatin A, TSA) inhibitors is more effective than relying on each treatment alone. In re-expressing epigenetically silenced genes induced by treatments, a very specific regulation takes place which suggests that methylation and de-acetylation have occurred either separately or simultaneously to determine MDR OS phenotype. In particular, functional relationships have been reported after measuring differential gene expression, indicating that MDR OS cells acquired growth and survival advantage by simultaneous epigenetic inactivation of both multiple p53-independent apoptotic signals and osteoblast differentiation pathways. Furthermore, co-treatment results more efficient in inducing the re-expression of some main pathways according to the computed enrichment, thus emphasizing its potential towards representing an effective therapeutic option for MDR OS.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/metabolismo , Metilases de Modificação do DNA/antagonistas & inibidores , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Osteossarcoma/metabolismo , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Biologia Computacional , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Osteossarcoma/genética , Reprodutibilidade dos Testes , Transdução de Sinais , Fatores de Tempo
16.
Int J Mol Sci ; 15(4): 5366-87, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24681584

RESUMO

There is a growing concern in the population about the effects that environmental exposure to any source of "uncontrolled" radiation may have on public health. Anxiety arises from the controversial knowledge about the effect of electromagnetic field (EMF) exposure to cells and organisms but most of all concerning the possible causal relation to human diseases. Here we reviewed those in vitro and in vivo and epidemiological works that gave a new insight about the effect of radio frequency (RF) exposure, relating to intracellular molecular pathways that lead to biological and functional outcomes. It appears that a thorough application of standardized protocols is the key to reliable data acquisition and interpretation that could contribute a clearer picture for scientists and lay public. Moreover, specific tuning of experimental and clinical RF exposure might lead to beneficial health effects.


Assuntos
Campos Eletromagnéticos/efeitos adversos , Exposição Ambiental/efeitos adversos , Ondas de Rádio/efeitos adversos , Animais , Barreira Hematoencefálica/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Sistema Nervoso Central/efeitos da radiação , Humanos , Camundongos , Neoplasias/diagnóstico por imagem , Doenças Neurodegenerativas/diagnóstico por imagem , Estresse Oxidativo/efeitos da radiação , Saúde Pública , Radiografia
17.
Artigo em Inglês | MEDLINE | ID: mdl-22746344

RESUMO

Vascular restenosis is affecting 30-40% of patients treated by percutaneous coronary angioplasty (PTCA). The advent of stenting reduced but not abolished restenosis. The introduction of drug eluting stent (DES) further reduced restenosis, but impaired endothelization exposed to intracoronary thrombosis as late adverse event. It is widely accepted that the endothelial denudation and coronary wall damages expose Vascular Smooth Muscle Cells (VSMC) to multiple growth factors and plasma circulating agents thus activating migration and proliferative pathways leading to restenosis. Among the major players of this processes, phosphorylated Elk-1, forming the Elk-1/SRF transcription complex, controls the expression of a different set of genes responsible for cell proliferation. Therefore, it is feasible that gene-specific oligonucleotide therapy targeting VSMC migration and proliferation genes can be a promising therapeutic approach. While a plethora of vehicles is suitably working in static in vitro cultures, methods for in vivo delivery of oligonucleotides are still under investigation. Recently, we have patented a novel erythrocyte-based drug delivery system with high capability to fuse with targeted cells thus improving drug bioavailability at the site of action. Here, the potential of these engineered porcine erythrocytes to deliver a synthetic DNA Elk-1 decoy inside syngenic porcine VSMC was tested. The results of this study indicate that Elk-1 decoy is actually able to inhibit cell proliferation and migration of VSMC. Our data also suggest that erythrocyte-based carriers are more efficient in delivering these oligonucleotides in comparison to conventional vehicles. As a consequence, a lower dose of Elk-1 decoy, delivered by engineered erythrocytes, was sufficient to inhibit cell growth and migration. This approach represents the translational step to reach in vivo experiments in pigs after PTCA and/or stent implantation where oligonucleotide drugs will be site-specific administered by using erythrocyte-based carriers to prevent restenosis.


Assuntos
Reestenose Coronária/terapia , DNA/administração & dosagem , Eritrócitos/fisiologia , Técnicas de Transferência de Genes , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Animais , Processos de Crescimento Celular/fisiologia , Reestenose Coronária/etiologia , Reestenose Coronária/genética , Reestenose Coronária/prevenção & controle , DNA/sangue , Terapia Genética/métodos , Microscopia Confocal , Músculo Liso Vascular/citologia , Stents , Suínos , Proteínas Elk-1 do Domínio ets/genética
18.
Electromagn Biol Med ; 31(1): 1-18, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22332889

RESUMO

Electric, magnetic, and electromagnetic fields are ubiquitous in our society, and concerns have been expressed regarding possible adverse effects of these exposures. Research on Extremely Low-Frequency (ELF) magnetic fields has been performed for more than two decades, and the methodology and quality of studies have improved over time. Studies have consistently shown increased risk for childhood leukemia associated with ELF magnetic fields. There are still inadequate data for other outcomes. More recently, focus has shifted toward Radio Frequencies (RF) exposures from mobile telephony. There are no persuasive data suggesting a health risk, but this research field is still immature with regard to the quantity and quality of available data. This technology is constantly changing and there is a need for continued research on this issue. To investigate whether exposure to high-frequency electromagnetic fields (EMF) could induce adverse health effects, we cultured acute T-lymphoblastoid leukemia cells (CCRF-CEM) in the presence of 900 MHz MW-EMF generated by a transverse electromagnetic (TEM) cell at short and long exposure times. We evaluated the effect of high-frequency EMF on gene expression and we identified functional pathways influenced by 900 MHz MW-EMF exposure.


Assuntos
Campos Eletromagnéticos/efeitos adversos , Micro-Ondas/efeitos adversos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Transcriptoma/efeitos da radiação , Apoptose/genética , Apoptose/efeitos da radiação , Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Cromossomos/genética , Cromossomos/efeitos da radiação , Dano ao DNA/genética , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Humanos , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/efeitos da radiação , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Tempo
19.
PLoS One ; 6(2): e17132, 2011 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21373641

RESUMO

Cytotoxic chemotherapy of cancer is limited by serious, sometimes life-threatening, side effects that arise from toxicities to sensitive normal cells because the therapies are not selective for malignant cells. So how can they be selectively improved? Alternative pharmaceutical formulations of anti-cancer agents have been investigated in order to improve conventional chemotherapy treatment. These formulations are associated with problems like severe toxic side effects on healthy organs, drug resistance and limited access of the drug to the tumor sites suggested the need to focus on site-specific controlled drug delivery systems. In response to these concerns, we have developed a new drug delivery system based on magnetic erythrocytes engineered with a viral spike fusion protein. This new erythrocyte-based drug delivery system has the potential for magnetic-controlled site-specific localization and highly efficient fusion capability with the targeted cells. Here we show that the erythro-magneto-HA virosomes drug delivery system is able to attach and fuse with the target cells and to efficiently release therapeutic compounds inside the cells. The efficacy of the anti-cancer drug employed is increased and the dose required is 10 time less than that needed with conventional therapy.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Transfusão de Eritrócitos , Eritrócitos/metabolismo , Nanopartículas de Magnetita/administração & dosagem , Engenharia Tecidual/métodos , Animais , Embrião de Galinha , Transfusão de Eritrócitos/estatística & dados numéricos , Eritrócitos/fisiologia , Eritrócitos/virologia , Células HeLa , Glicoproteínas de Hemaglutininação de Vírus da Influenza/administração & dosagem , Glicoproteínas de Hemaglutininação de Vírus da Influenza/isolamento & purificação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Magnetismo/métodos , Terapia Viral Oncolítica/métodos , Orthomyxoviridae/química , Orthomyxoviridae/crescimento & desenvolvimento , Virossomos
20.
Virchows Arch ; 453(5): 449-55, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18841391

RESUMO

The immunohistochemical expression of phosphorylated (activated) Akt (pAkt) in 50 advanced gastric carcinomas has been analyzed and the results correlated with age, sex, location in the stomach, histotype, stage, survival, mitotic and apoptotic index, some cell cycle regulators (cyclin D1, cyclin E, p34/cdc2, p27/kip1), and cell proliferation. There was a statistically significant direct correlation between pAkt expression (both cytoplasmatic and nuclear) and depth of infiltration of the tumor, number of infiltrated lymph nodes and p34/cdc2 expression, and between prevalently nuclear pAkt and cyclin D1 and cyclin E. Conversely, there was a significant inverse correlation between nuclear pAkt and apoptotic index and between cytoplasmatic and nuclear pAkt and patient survival. No correlation was found between pAkt and sex, age, tumor location, histotype, mitotic index, and cell proliferation. These findings suggest that pAkt may be considered an indicator of tumor progression and patient survival in gastric cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose , Proteína Quinase CDC2/metabolismo , Proliferação de Células , Ciclina D1/metabolismo , Ciclina E/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Neoplasias Gástricas/patologia , Análise de Sobrevida , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...